
Basic Protocols, Message Sequence Charts, and the

Verification of Requirements Specifications

A. Letichevsky∗, J. Kapitonova, A. Letichevsky Jr., V. Volkov
Glushkov Institute of Cybernetics, National Academy of Science, Kiev, Ukraine

S. Baranov†, V. Kotlyarov
Motorola, St.Petersburg, Russia

T. Weigert
Motorola, Schaumburg, Illinois, United States

Abstract

Message sequence charts are a widely used notation to express requirements specifica-
tions of multi-agent systems. The semantics of message sequence charts can be defined
algebraically in the theory of agents and insertion functions. Using this algebra, one can
split message sequence chart scenarios into sets of Hoare triples consisting of precondition,
the specification of a finite process, and a postcondition. We refer to such triples as “basic
protocols.” In this paper, we discuss tools to prove properties of systems described as basic
protocols, such as the completeness (at each of its stages the system behavior has a possible
continuation) and consistency (at each stage the system behavior is deterministic) of the
specification, or the correspondence of the specified behavior to given scenarios. Together,
these tools constitute a powerful environment for the formal verification of requirements
specifications expressed through message sequence charts.

1. Introduction

In [6] requirements capture is defined as an engineering process of determining the artifacts to
be produced as the result of a development effort. The process includes the following steps:

• Requirements identification,

• Requirements analysis,

• Requirements representation,

• Requirements communication, and

• Development of acceptance criteria and procedures.
∗Email: let@iss.org.ua
†Email: Sergey.Baranov@motorola.com

1

Requirements are the agreement between the customer and the developer regarding the ar-
tifacts to be produced. As agreements, they must be clear to the customer as well as to the
developer and their level of formalization depends on the common understanding between these
parties and the experience of those involved in the process of requirements identification. Un-
fortunately, most practices of describing requirements and preliminary designs (be they through
natural-language, diagrams, or pseudocode) do not offer mechanized means of establishing their
correctness. Therefore, the primary way to deduce properties of the specification and its conse-
quences is through inspections and reviews.

To be amenable to formal analysis, requirements must first be formalized, i.e., rewritten in
a formal language. The need of formalization imposes limits on the deployment of traditional
formal methods in industrial applications in that it requires familiarity with logical notions
and notations these methods use. Such familiarity is not wide-spread among todays software
engineers. An additional restriction on the application of deductive tools (e.g., PVS [20]) is that
these require the development of a mathematical theory of the domain at a very detailed level
to implement even very simple predicates. Mathematical sophistication is usually needed.

Alternatively, instead of relying on formalized specifications, formal methods have been suc-
cessfully applied to specifications captured in design languages widely accepted in the engineering
community, such as MSC [10], SDL [11], or UML [12].

The PTK [1] system implements automated syntax and semantic analysis on MSC diagrams
and generates test scripts from such diagrams in various languages including SDL, TTCN, and
C. FatCat [19] is aimed at discovering non-determinism in sets of MSC diagrams. Various
projects have applied model checking and automated theorem proving to SDL specification,
by converting such specifications into appropriate input forms: The IF system from Verimag
translates SDL to PROMELA code and then applies the SPIN model checker [5]. At Siemens,
verification of part of the GSM protocol was conducted using the BDD-based model checker
SVE [21]. An integrated framework for processing SDL specification has been implemented
based on the automated theorem prover ACL2 [23]. The project OMEGA (with participation of
two tool vendors, Telelogic and iLogix) aims at the development of formal tools for the analysis
and verification of design steps based on UML specifications [9].

However, in spite of significant research that has been devoted to the development of formal
methods, their application has failed more often than not when confronted with real-life, indus-
trial specifications. Most formal verification methods utilize generic decision procedures which
are not effective on large applications.

In this paper we present a new approach based on the notion of basic protocols and the
theory of interaction of agents and environments. This approach has been implemented in the
system VRS (Verification of Requirement Specifications) and has been piloted in a number of
industrial software development projects. The VRS system is based on algebraic and insertion
programming [13, 17]. It is an open environment and can be adjusted easily to new subject
domains.

Basic protocols represent system requirements in the form of Hoare triples α →< P > β,
where P is a process, and α and β are logical formulae (constituting pre and post-conditions
of process P). Requirements stated as Hoare triples closely resemble the requirements used in
engineering practice. (The main difference to the latter, of course, being the use of formal lan-
guage instead of natural language.) Software designer typically specify system requirements as
a set of possible behavior fragments expressing the system functionalities rather than developing

2

specifications in the form of complete scenarios.
The representation of requirements as basic protocols is based on the theory of interacting

agents and environments [16]. In contrast to the major traditional theories of interaction,
including CCS [18], CSP [8], or ACP [3, 4] which are based on an implicit and hence not
formalized notion of an environment, the theory of interaction of agents and environments studies
agents and environments as objects of different types. An environment may be considered as yet
another agent, but sometimes an environment for a given agent is obtained from considering all
other agents of the system acting in parallel with the given one. This theory was first introduced
in [7], and we will describe its basic notions in Section 2.

Section 3 introduces the formal definition of basic protocols and related concepts. In Section
4, we present verification techniques that our system is able to apply to specifications defined
by basic protocols: checking of transition consistency and completeness, checking of time con-
sistency, checking against annotated scenarios, and generating traces and scenarios for testing.

Sections 5 and 6 introduce MSC as a language for expressing requirements and describe
how MSC diagrams are mapped to the underlying algebraic framework. An example from the
telecommunications domain illustrates our verification techniques. We specify a simple telecom-
munications protocol by a set of MSC diagrams representing basic protocols and demonstrate
how an error can be detected.

We conclude with a short discussion of the implementation of the VRS system and report
results of the application of this tool in several large-scale industrial projects.

2. Agents and environments

We formalize system requirements in a language based on process algebra [4] enriched by the
model of interaction of agents and environments [16]. Agents are labeled transition systems with
states considered up to bisimilarity. They interact with each other by performing observable ac-
tions. The notion of an agent formalizes such diverse entities as software components, programs,
users, clients, servers, or active components of distributed systems.

A state of an agent is defined by its behavior. Therefore, the equivalence of agents can
be characterized in terms of the complete and continuous behavior algebra F (A). This is an
algebra with two sorts of elements—behaviors u ∈ F (A), represented as finite or infinite labeled
trees, and actions a ∈ A. As in basic process algebra, two operations are defined over F (A):
nondeterministic choice, which is an associative, commutative, and idempotent binary operation
u+v, where u, v ∈ F (A) and prefixing a.u ∈ F (A), where a ∈ A, u ∈ F (A). The neutral element
of nondeterministic choice is the deadlock element 0 (representing the impossible behavior).
The empty behavior ∆ performs no actions and denotes successful termination of the behavior
of an agent. The algebra F (A) is partially ordered by the approximation relation v with
minimal element ⊥. Both operations are continuous functions on the set of all behaviors over
A. Completeness means that any directed set of behaviors has a least upper bound.

Each element u of a behavior algebra has a canonical representation

u =
∑

i∈I

ai.ui + εu

defined up to commutativity and associativity of nondeterministic choice. In this representation,
all ai.ui are different behaviors, I is a finite or infinite set of indices, and εu ∈ {0,∆,⊥,∆+ ⊥}.

3

We say that behavior v is reachable from u if u = v + u′ or (inductively) v is reachable from ui

for some i ∈ I. We call behavior u divergent if ⊥ is reachable from u and convergent otherwise.
An environment E is an agent over a set of actions C together with an insertion function

Ins(e, u) which we denote by e[u]. Its first argument e is a behavior of an environment, the
second argument is a behavior of an agent over a set A of actions (of the agent) in a given state
u. An insertion function is an arbitrary function continuous in both of its arguments. It yields
a new behavior of the same environment.

We define an equivalence relation over agents which is, in general, weaker than bisimilarity.
Two agents (in given states) u and v are insertion equivalent with respect to an environment E,
written u ∼E v, if for all e ∈ E, e[u] = e[v]. After the insertion of an agent into an environment,
the new environment is ready to accept new agents to be inserted and multiple insertion allows
to consider states of the form e[u1, u2 . . . , un] (shorthand for (...((e[u1])[u2])...)[un]).

To define an insertion function, one defines labeled transitions on the set of states e[u] of an
environment with an inserted agent. We rely on rewrite rules

F (x)[G(y)] → d.F ′(z)[G′(z)]

F (x)[G(y)] → F ′(z)[G′(z)]

where x = (x1, x2, . . .), y = (y1, y2, . . .), z = (x1, x2, . . . , y1, y2, . . .), x1, x2, . . ., y1, y2, . . . are
action or behavior variables, d ∈ C, and F, G, F ′, G′ are expressions in behavior algebra, that
is, expressions built by nondeterministic choice and prefixing. The first kind of rule defines
transitions of a type

F (x)[G(y)] d→ F ′(z)[G′(z)]

The second kind of rule defines unlabelled transitions. These are not observable; the definition
of environment behavior includes the following rule

e[u] ∗−→ e′[u′], e′[u′] d−→ e′′[u′′]

e[u] d−→ e′′[u′′]

where ∗−→ denotes the transitive closure of unlabelled transition. Rewrite rules must be left
linear with respect to their behavior variables, that is, no behavior variables may occur more
than once in the left hand side. Further, rewrite rules for terminal and divergent states must
be added to ensure that the insertion function is continuous. Rewrite rules may define non-
deterministic transition relations when two different left hand sides can be matched with the
same state of an environment e[u] (critical pairs are allowable).

We consider attributed transition systems, that is, systems with a mapping from states to
attribute values. For attributed transition systems, the notion of bisimilarity must be slightly
modified, and the behavior algebra should be considered together with an attribute mapping
from behaviors to the attribute domain.

For more details about a theory of interacting agents and environments see [15, 16, 17].

3. System specification by means of basic protocols

Base language. Basic protocols are functionally definite fragments of system behavior. A
system is defined as an attributed transition system, and the states of a system are observed by

4

means of performed actions as well as attributes and variables defined on states changing their
values in time. Properties of states are defined by means of formulae of some logic, which we
refer to as the base language. Typically, the base language is first order, possibly with typed
variables. The formulae of the base language may have attributes as the only free variables.
Attributes may belong to functional types; to avoid higher order types, attributes may depend
on parameters and functional expressions are restricted to first order expressions. The state of
a system consists of the state of the environment which defines the values of attributes and the
states of agents inserted into this environment if they are observable after insertion.

The choice of abstraction level of the base language is critical and depends on the problem
domain and the state of development. Usually, a low level of abstraction with concrete states is
used when the development of a system has been completed and the intention is to generate test
cases from the requirements. A higher abstraction level is useful when one attempts to prove
properties of the system requirements, where large collections of agents (processors in multi-
processor system, mobile phones, etc.) can be replaced by some formula expressing important
properties of these collections.

Permutability relation. Before defining transitions, the set of actions C that can be
performed by the system and observed by the external world needs to be defined. Actions are
functional expressions of the base language and may depend on attributes. To generate the
behavior of a system defined by basic protocols, we shall use a binary relation a ↔ b on the set
of actions called permutability relation. We assume that predicate a ↔ b belongs to the base
language, therefore its validity depends on the current state of a system and we can compute
either semantic s |= a ↔ b or syntactic inference α ` a ↔ b, where α is a formula (or a set of
formulae) of the base language. In the following, we shall assume that permutability relation
does not depend on the state of a system; however, all main concepts can be extended to the
general case.

We define permutability for the case u ↔ b where u is a behavior over C and b is an action.
This is the minimal relation such that:

1. For all actions b, ∆ ↔ b, ⊥6↔ b, 0 6↔ b;
2. (u + v) ↔ b ⇔ u ↔ b ∧ v ↔ b;
3. a.u ↔ b ⇔ a ↔ b ∧ u ↔ b.
From this definition it follows that action b is permutable with behavior u if all actions

reachable from u are permutable with b (action a is reachable from u if some v is reachable from
u and v

a−→ v′), u is convergent, and 0 is not reachable from u.
Partial sequential composition of two behaviors. Let

u =
∑

i∈I

ai.ui + εu, v =
∑

j∈J

bj .vj + εv

Then
u ∗ v =

∑

u↔bj ,j∈J

bj .(u ∗ vj) +
∑

i∈I

ai.(ui ∗ v) + (εu; εv)

where (∆; ε) = ε, (⊥; ε) =⊥, (0; ε) = 0. Note that partial sequential composition is not
continuous in the first argument, but it is continuous in the second one, and it is continuous in
both when the first argument is finite and convergent.

5

If the permutability relation is always false, partial sequential composition coincsides with
sequential composition. If all actions are permutable, it coincsides with interleaving parallel
composition. Partially sequential composition originates from weak sequential composition in-
troduced by Renier [22] for the definition of the operational semantics of MSC and generalizes
it further.

Basic protocols. Each basic protocol is a Hoare triple α →< P > β, where P is a process,
α and β are precondition and postcondition of process P , respectively. α and β are represented
by logical expressions of the base language and define conditions on the set of states of a system.
A process of a basic protocol is a finite convergent process over the set C of environment actions,
which may contain the set A of agent actions. We shall use the following notation for arbitrary
basic protocols: pre(b) = α,post(b) = β, and the process of B is denoted as Pb.

Each basic protocol defines properties of a system and can be understood as a statement of
temporal logic: if the precondition is true then the process of a protocol can start, and after it
has successfully terminated, the postcondition must be true.

Predicate transformers. Assume an assertion ϕ in the form of a formula of the base
language means ∀s(s |= ϕ) or ` ϕ in a given theory.

A predicate transformer Tr(α, β) is a function defined on formulae of the base language
returning a new formula such that Tr(α, β) → β . A predicate transformer strengthens the
postcondition of a basic protocol by adding residual properties from the precondition.

Systems specified by basic protocols. A system is specified by its initial state and its
properties. Let the initial state be described by a set of properties expressed in the base language,
denoted as α0. We then denote the behavior of a system generated by a set of basic protocols
B and initial state satisfying α0 by S(B, α0). The system is usually not defined uniquely by
the initial state α0; rather, several protocols may be applicable in the initial state as the initial
state α0 may imply their precondition. Therefore, we can define the behavior of a system as the
nondeterministic sum of behaviors starting in the initial state

S(B, α0) =
∑

α0→α

Sα

The behavior Sα is the partially sequential composition of basic protocols from B. The first
protocol is arbitrarily chosen from those basic protocols with a precondition satisfied by α. The
set of all such conditions is B(α) = {b ∈ B|α → pre(b)}. When the process of a basic protocol
has completed, the postcondition of this basic protocol will be true. In fact, a stronger set of
conditions may be true, as the postcondition may not take all the aspects of the precondition into
account. We consider the stronger condition given by the predicate transformer Tr(α,post(b)).
Consequentially, the behavior Sα is defined as

Sα =
∑

b∈B(α)

Pb ∗ (STr(α,post(b)) + ∆)

The summand ∆ is added to generate not only infinite traces, but also finite ones. When the
set B(α) is empty, Sα = 0. Therefore, if ∆ is absent, all finite traces, if any, terminate in the
deadlock state 0.

A system is defined up to bisimilarity as a minimal fixed point of the above equations in the
behavior algebra.

6

Scenarios. A system S(B, α0) represents all possibilities of selecting basic protocols to
construct behaviors. At times we are interested in a partial system description which can be
obtained by restricting the choice of basic protocols. Behaviors obtained this way are called
scenarios generated by basic protocols. To formalize this constuction we consider the set Sα of
scenarios generated by the set of basic protocols B starting from initial condition α. This set is
defined as a maximal set satisfying the following condition: If S ∈ Sα, then there exists b ∈ B
such that α → pre(b) and S = Pb ∗ S′ + S′′ where S′ ∈ STr(α,post(b)) and S′′ ∈ Sα or S = Pb.

If the set B(α) is not empty, then neither is the set Sα because it contains the universal
scenario S(B,α) as well as B(α).

Parameterized basic protocols have the general form

∀x(α(x) →< P (x) > β(x))

where x = (x1, . . . , xn). Parameterized basic protocols are used when there are infinitely many
or, at least, a great number of similar basic protocols. Bound variables can be typed if the base
language allows types. Substitution of constant (ground) values for x gives us the set Inst(B)
of instantiated basic protocols; this set must be used instead of B in the definitions above.

4. Consistency and completeness of basic protocols and scenarios

Many important properties of requirement specifications can be checked during requirements
capture. First of all, requirements characterizing the total behavior of a system may be expressed
in terms of temporal modalities (dynamic requirements) including safety and liveness conditions.
These requirements must be consequences of static requirements expressed by means of basic
protocols. Well-established model checking techniques can be used to check whether these
requirements hold in the model defined by a set of basic protocols.

Unfortunately, when initially specified, the set of basic protocols is often inconsistent or
incomplete. Different forms of inconsistency and incompleteness occur in practice.

Transition consistency of basic protocols. The behavior of a system defined by basic
protocols is characterized by the scenarios it generates. When generating a scenario, at each
step an applicable basic protocol must be selected. A basic protocol is applicable at a state if its
precondition is true in that state, given the values of its state variables (attributes of environment
and agents). In order to construct a deterministic system, the selection of a protocol must depend
only on the initial actions that can be performed when a protocol starts. Therefore, each time
when some basic protocol can be applied and there is at least one initial action defined, there
must be exactly one applicable basic protocol.

A sufficient condition for establishing the transition consistency of basic protocols is as fol-
lows: if the preconditions of two basic protocols are intersected, that is, if the negation of their
conjunction cannot be proven or can be refuted, then the processes defined by these protocols
as well as their postconditions must be equivalent, provided there exists a common initial action
(weak consistency) or a common trace (strong consistency). To prove transition consistency, all
pairs of basic protocols are considered. For each pair, the consistency condition (the negation
of the conjunction of preconditions) is generated, and a proof attempt is initiated. If the proof
succeeds (for all symbolic values of state variables and parameters), the pair of protocols is con-
sistent, and these two protocols cannot be applied at the same time. Otherwise (the consistency

7

condition was not proven or was refuted), the protocols and the induced processes are checked
for equivalence. Equivalent processes generate the same traces and have provably equivalent
postconditions. Note that this condition is sufficient but not necessary, as it is possible that the
intersection of a set of preconditions cannot be refuted, but there are no reachable states that
validate this intersection.

Completeness of basic protocols implies that at any moment in time, there must be
at least one basic protocol that can be used to continue the scenario at this point unless the
scenario has terminated. A sufficient condition for completeness is for the disjunction of all
preconditions of all basic protocols to be valid, for a given initial action. Actually, this condition
is too strong and can be weakened if an admissibility condition is given for the set of protocols.
By admissibility condition we refer to a precondition that is implied by a particular action
occurring. In this case, the disjunction of the preconditions of the basic protocols in this set
must be valid if the conjunction of the admissibility conditions for this set is valid.

Annotation consistency of scenarios. Each scenario generated by basic protocols can
be annotated by assigning formulae of the base language to reachable behaviors.

Each system scenario must be generated by basic protocols. In addition, all annotations must
be valid at corresponding states in any admissible basic protocol. If a scenario can be decomposed
into a set of basic protocols and all annotations are valid, it is annotation consistent. To check for
annotation consistency, we use symbolic simulation of scenarios. We start from initial conditions,
determine which of the basic protocols can be applied by checking preconditions, match events
found in the scenario against expected events according to the basic protocols generating the
scenario, and obtain the conditions at the end of each protocol executed concurrently with
others. Each time annotations are encountered, they are verified to be consequences of the
conditions that currently hold at that state. The conditions characterizing the internal state
of a scenarios may be insufficient for the selection of a basic protocol even if the set of basic
protocols is transition consistent. In this case, the alternatives will be determined by control
conditions. In case of loops, annotations can be used as loop invariants. If the invariant of a
loop is proven, the loop needs to be symbolically evaluated only once.

5. Capturing requirements by basic protocols

Basic protocols resemble the natural language requirements statements found in typical system
specifications. Consider the following two examples from industrial practice:

SYRaSRMenu 430 Upon determining that the setup greeting prompt has been completed
and if a Voice Recognition Session is active and menu level is “Main Phone Setup”
then the system shall request the audio input channel and shall allow the user ses-
sion silence timeout time to speak a voice command.

SYRaCSTATE 701 While in the no phone call state and upon detecting that the Selected
Device is set to a valid device and the Selected Device’s call status indicates a call in
progress, the system shall assume it is in cip.

While the stylized natural language still leaves room for interpretation, one can clearly discern
pre- and postconditions and a processing section.

8

Requirements specifications are often presented in two parts. The first, as shown above,
is the description of the fundamental system behavior in the form “if some specific conditions
are satisfied then a corresponding sequence of actions is performed by each involved system
component, and after completing these actions, the new system state will satisfy some new con-
ditions.” However, part of requirements specifications is also represented by means of scenarios
describing characteristic interactions occurring between components of the system. Scenarios
must be consistent with the fundamental system behaviors.

Basic protocols formalize elementary requirements of a system. We rely on two languages to
define basic protocols. The first one is the base language used to state pre- and postconditions,
the second one is the notation used to define the processes of basic protocols. Basic protocols
can be combined into scenarios that describe fragments of system behavior starting from a given
system state by means of a composition operation.

Each basic protocol has two meanings. The first meaning is as a behavior and is expressed
as an expression of behavior algebra. The second meaning is as a predicate transformer which
transforms the precondition into the postcondition. The definition of composition of two basic
protocols must cater to both interpretations. Composition of basic protocols viewed as behavior
is defined through the permutability relation of actions that captures the nondeterminism in
the ordering of actions taken from different basic protocols. When the protocol process starts,
not only its precondition will be true but typically some other conditions are also known to
be satisfied. Some of these conditions (not mentioned in the precondition) remain true after
performing a process, if they do not depend on the postcondition and are consistent with it.
Therefore, when viewing basic processes as predicate transformers we strengthen the postcon-
dition by adding these conditions.

Agents and environments. The state of an environment is represented by attributes of
the environment of different types. The states of agents are defined on the corresponding level
of abstraction by means of symbolic expressions of the base language. Agent states and agent
names comprise two special domains used for state descriptions. When there are several types of
agents, the set of agent types is also a special domain. Each agent inserted into the environment
is uniquely identified by its name.

Processes. Traditional process algebra languages like CCS, CSP, or formalisms based on
ACP can be used directly as process languages. However, languages like UML, MSC, or SDL
are very popular in modern engineering practice and have a convenient, expressive graphical
syntax. State machines, timed automata, wave diagrams etc. serve hardware and real time
applications. In any case, behavior or process algebra can be used as a uniform foundation of
the latter engineering approaches.

6. Message sequence charts and basic protocols

MSC diagrams are a convenient notation to express both basic protocols and scenarios. Con-
ditions are used as control conditions for selecting alternatives in MSC diagrams, as well as for
annotating scenarios, and to express pre- and postconditions.

An MSC diagram consists of a set of instances, or “life lines” which exhibit events that may
occur during the execution of that instance. Such events may be the sending or receiving of a
message, the occurrence of a local action, the setting or resetting of timers, the occurrence of
a timeout, or the creation and stopping of an instance. The events on a life line are strictly

9

ordered by their occurrence, while no ordering exists between events on different life lines other
than that imposed by the causality of events (for example, a message cannot be received before
it is sent). Considering an instance of an MSC diagram to be represented by an agent of the
behavior algebra, its actions represent the events occurring on an instance. An action is usually
permutable with actions occurring at different instances; actions occurring on the same instance
are usually not permutable. Therefore, partial sequential composition for agents representing
MSC instances coincides with weak sequential composition. More subtle permutability relations
take into consideration data dependencies arising from the execution of actions, or can be used
to represent constructs such as coregions or general orderings.

An MSC diagram can be used to describe basic protocols in a convenient fashion. Each basic
protocol so formalized begins with a global condition, representing the precondition of the basic
protocol. The process is expressed as a finite MSC diagram without inline expressions which,
therefore, can be represented as a set of transitions

P
a1−→ P1

P
a2−→ P2

etc.

where a1, a2, . . . represent the initial events in the MSC diagram. The process P is then

P = a1.P1 + a2.P2 + . . .

The semantics of MSC diagrams can then be expressed by the following expression in the algebra
of agents and environments:

e[a1.P1 + a2.P2 + . . .]

where each Pi represents a partial sequential composition of actions (events of MSC diagrams)
as described, and e is an environment which ensures the correct order of events. By defining the
insertion function appropriately, we can capture a notion of behavior that precisely expresses
the semantics of MSC diagrams.

Scenarios are simply MSC diagrams. However, for a scenario to be valid with respect to
requirements captured as a set of basic protocols, a scenario must be the result of composing a
subset of the basic protocols, using partially sequential composition, possibly instantiating their
parameters.

Intuitively, composing two basic protocols into a scenario represented as an MSC diagram
means drawing the first MSC diagram before the second one. This is straightforward for two
(finite) diagrams comprising the same instances: The instances are matched, and all events of
the first diagram on each instance precede the events on the second one. However, if the set
of instances does not coincide, events on instances of the second diagram not part of the first
diagram may occur at any time, as can events on instances of the first diagram not part of the
second, subject to constraints imposed by the instances themselves. (This intuition resembles
weak sequential composition of processes introduced by Reniers [22].) In the general case, we
define a permutability relation on the set of actions permitting the possible first action of the
second process to be performed first if it is permutable with all actions of the first process. For
MSC diagrams permutability of two events means that they occur on different instances and
they are not send or receive events for the same message. A weaker permutability relation could
be defined if dependencies between actions exist that should be taken into account.

10

The postcondition of basic protocols expresses the state of the system after the execution of
the process of the basic protocol. When the process starts executing, not only the precondition of
the process are known to be true, but also other aspects of the system state that are not affected
by this basic protocol. Some of these additional facts will remain true after the execution of the
process. Predicate transformers are used to strengthen the postcondition of the basic protocol
by these ancilliary (to this basic protocol) pieces of information.

An example from the telecommunications domain [2] will illustrate the reasoning over MSC
diagrams expressing basic protocols. In this example, 24 MSC diagrams describe POTS (a basic
call bearer service) extended by two supplementary services: Call Waiting (CW) and 3-way
connection (3WAY). A subset of the basic protocols for this example1 are shown in Figure 1.
The only type of agent is phone and each agent has two symbolic attributes: cw (different from
0 when call waiting is in process), and twc (different from 0 if three way calling is in process).
The states of agents as well as actions (messages exchanged between phones and network) appear
in state assertions and processes of basic protocols. Predicate valid(n) is defined by the following
condition

valid(n) ⇔ phone(n, idle) ∨ (phone n.cw = 0) ∧ ¬(phone(n, ringing))

Among the instances shown in MSC diagrams of this example, there is always an instance
“Network” that corresponds to the environment for all agents. The other instances represent
phones participating in basic protocols or scenarios. A set of axioms characterizing state asser-
tions was initially formulated. Other axioms were discovered and added through unsuccessful
attempts to prove consistency: when an inconsistency was found, it was analyzed to explain
why the given preconditions are not intersected, which yielded additional axioms that allowed
the proof to succeed.

Our tool then generated the consistency statements (there are more than 200 of them). Ten
of these statements cannot be proven or refuted. These point to inconsistencies due to the
interaction between the supplementary services. These inconsistencies can only be removed by
redesigning the specification. An example of such inconsistency is revealed when examining the
pair of protocols “three way teardown2” and “CW teardown”. These two protocols can have
the common first action onhook z, and their corresponding consistency condition is

∀(z, n′, k′,m′′, n′′)(
¬(phone(k′, connected z) ∧ phone(n′, cw wait k′)) ∨
¬(phone(z, three wayconnect(m′′ ∧ n′′))))

This condition cannot be proven and, therefore, a warning appears in the verdict generated by
the consistency checker. To ascertain whether the failure to prove the consistency condition
indeed points to an inconsistency in the specification, one has to prove that a state satisfying
the negation of the consistency condition is reachable from the initial state. Such state indeed
exists, and our tool constructs a scenario leading to this state. The scenario found by the system
is depicted in Figure 2. In this scenario, k′ = n′′; the network ends up in a state where, upon

1We use the expression state(x, m, s) as an atomic formula asserting that the agent with the name m has the
type x and is in a state s at the current moment of time (as shorthand we use the notation x(m, s)). An attribute
r of agent m of a type x is denoted as x m.r; if this attribute has parameters t1, . . . , tn, it will be denoted as
x m.r(t1, . . . , tn).

11

Phone n Network

phone(m,idle)

phone(m,dial)

offhook

 dialtone

Call_setup_initial

Network Phone m Phone n

Call_setup_dialing1

phone(m, dial)

phone(m, dial n)

dial(m, n)

Call_setup_success Three_way_initial Call_setup_dialing2

Network Phone m Phone n

phone(m, connected n)

offhook

Network Phone m Phone n

Phone(m, connected n)&
~(phone m.twc = 0)

phone(m, dial)&
phone(n, three way wait m)&
phone m.twc:=hold n

flash

Network Phone m Phone n

phone(m, dial n)&valid n

phone(m, ringing n)&
phone(n, ringing)

ring

ring

phone(m, ringing n)&
phone(n, ringing)

dialtone

Network Phone n Phone m Phone k

 phone(k, connected m)&
 phone(n, three way wait k)

phone(k, three way connect(m&n))&
 phone k.twc:=0

flash

Network Phone n Phone m Phone k

phone(k, connected m)&
phone(n, ringing k)

 phone(k, connected n)&
 phone(m, cw wait k)&(phone k.cw:=hold m)

flash

three_way_connect cw_answer

Network Phone n Phone m Phone k Network Phone n Phone m Phone k

phone(k, three way connect(m&n))

 phone(k, idle)&phone(m, dial)&
 phone(n, dial)

onhook

 phone(k, connected m)&phone(n, cw_wait k)

 phone(k, connected n)&
 phone(m, idle)&(phone k.cw:=0)

onhook

three_way_teardown2 cw_teardown1

 dialton

 dialton

busy

flash

Figure 1: Basic protocols defining POTS augmented by CW and 3WAY.

12

 1

 Phone m Phone n Phone k Network Phone z

Phone m

 dial m

dialtone
offhook

 ring

 ring

offhook

dialtone

 dial n

 ring

 ring

offhook

 flash
offhook

dialtone

 dial k

 ring

 ring

 flash

 flash

 anno phone(z, three_wayconnect (m&k))

 anno phone(k,connected z) &
 phone(n, cw_wait k)

phone(z, connected m)

phone(k, connected n)

phone(z, dial)
phone(m,three way wait z)

phone(k, connected z)
phone(n, cw_wait k)

Figure 2: Scenario leading to the detected error.

receiving an onhook message, it would not know how to respond, as the two services demand a
different response (it would have to either connect k′ with n′ or to send a dialtone to phone k′).

7. Implementation

VRS (Verification of Requirement Specifications) is based on the APS system [13] developed
at the Glushkov Institute of Cybernetics. VRS is comprised of several implementation layers.
On top is a level describing an environment specific for the subject domain under development
which is tightly connected with the formalization of requirements. The second layer is the
Action Language simulator and is the basis for the key functionalities of VRS. This simulator is
implemented in APLAN, a language based on rewriting logic. As the lowest layer, the APLAN
interpreter and its supporting libraries have been written in C/C++. The following tools have
been realized within the VRS system.

• Creation and debugging of a specifications formalized as a set of basic protocols;

• Verification of the formalized requirements;

• Generation of traces and scenarios; and

• Proving of properties defined by annotated MSC and SDL specifications.

13

These tools are applied during requirements capture and testing: Creation, editing and debug-
ging of basic protocols is supported by the Trace Generator Client. It allows easy creation of
basic protocols via a graphical MSC editor, simulation of the system specified by basic proto-
cols, and visualization of behaviors by directing the generation of traces. The description of
the environment is created via special forms, supported with pop-up menus and hints. Trace
generation is controlled by applying a set of filters and queries.

Verification of the set of basic protocols is performed by the Transition Consistency Checker.
It processes the set of basic protocols and creates a verdict regarding the transition consistency
and completeness of basic protocols.

The Trace Generator implements the generation of traces and scenarios from the set of basic
protocols. Further, it detects deadlocks in the system of basic protocols, checks any safety
conditions, and detects the reachability of different states of a system.

Specifications captured in SDL or MSC can be labeled by a set of annotations of the base
language. Every annotation expresses a local property of the system. These annotations are
checked during symbolic simulation using a special annotation checker and prover. The anno-
tation checker is able to define the validity of local annotations and can construct a counter
example where an annotation is not valid (not proved or refuted). In addition, it can construct
a set of MSC traces that reach a given annotation.

The VRS system and its supporting tools have been piloted in a number of industrial projects;
a sample of these projects is shown in the table below. Most projects are from the telecommu-
nications or telematics domains. For each project, a number of defects has been detected in the
requirements, and corresponding sets of traces have been generated. All pilot projects discov-
ered errors in the early stages of software development which eases the demand on subsequent
testing. Pilot projects followed the following steps:

Step 1. The informal natural language requirements specifications are developed.

Step 2. The requirements along with the accompanying technical information on the subject
domain are studied by the piloting team and formalized specifications of the behavioral
properties of the product are developed in the from of MSC diagrams.

Note 1. Studying and rewriting the requirements into formal specifications requires fre-
quent consultations with domain experts.

Note 2. The developed formal specifications are reviewed by the domain experts (cus-
tomers) for correspondence with their understanding of the original requirements.

Note 3. Typically, about 30% of the inconsistencies and incompletenesses in the original
requirements are discovered in the process of formalizing the specifications.

Step 3. The formal requirements are processed by VRS to discover inconsistencies and incom-
pletenesses, if any are present in the specification.

Note 4. VRS also generates a set of traces which guarantee complete coverage of the
scenarios induced by the basic protocols. In case a defect is discovered, the respective
trace (counter-example) can be converted into a test case which may be executed to
put the system into the identified situation to help the developers understand the
root cause of the defect.

14

Note 5. It is still necessary to “manually” test certain requirements, as complete au-
tomation of this process is impossible due to the algorithmic undecidability of this
general problem. However, manual “residual testing” is restricted to a much smaller
portion of the specification, typically by 2 orders of magnitude smaller. The VRS
tool identifies those scenarios that have to be verified manually.

Step 4. The formalized requirements specification is corrected and becomes the basis for further
development. System tests can be derived from the final requirements specification.

The verdict produced by VRS is in the same graphical language as the input specifications.
In this case, the MSC diagrams are augmented with comments which represent test traces. The
traces may be then automatically converted into tests to run in the respective test environment
or directly on the respective hardware.

The table below summarizes the results of pilot projects. For each pilot project, it indicates
the size of initial informal requirements in pages (column “Reqmts”) and the corresponding
number of formalized basic protocols (column “Protocols”). Column “Coverage” shows the
amount of the requirements captured formally as a percentage of the total system specification.
Column “Errors” shows the three main types of defects detected: the first type is found during
the formalization stages; the second is automatically found while checking basic protocols for
transition consistency, and the third one is found with the tests automatically generated from
basic protocols. The final column “Effort” indicates the staff weeks required to formalize the
requirements and to verify the specification.

Project Reqmts Protocols Coverage Errors Effort
1 400 127 50% 11 5.5
2 200 70 100% 10 5.6
3 730 192 100% 18 20.0
4 624 56 20% 8 5.5
5 323 219 100% 38 3.0
6 116 42 100% 3 0.7

References

[1] P. Baker, P. Bristow, C. Jervis, D. King, and B. Mitchell, Automatic Generation of Confor-
mance Tests From Message Sequence Charts, Proceedings of 3rd SAM (SDL And MSC) Workshop,
Telecommunication and Beyond, Aberystwyth, UK, 24-26 June 2002, Lecture Notes in Computer
Science, 2599, 170–198, 2003.

[2] S. Baranov, C. Jervis, V. Kotlyarov, A. Letichevsky, and T. Weigert, Leveraging UML to de-
liver correct telecom applications in Uml for Real: Design of Embedded Real-Time Systems by L.
Lavagno, G. Martin, and B. Selic (editors), 323–342, Kluwer Academic Publishers, 2003.

[3] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and
Control, 60(1): 109-137, 1984.

[4] J.A. Bergstra, A. Ponse, and S.A. Smolka, Editors. Handbook of Process Algebra. Elsevier, 2001.

[5] M. Bozga, J.C. Fernandez, L. Ghirvth S. Graf, J.P. Krimm, L. Mounier, and J. Sifakis “IF: An
Intermediate Representation for SDL and its Applications”, Proceeding. of the Ninth SDL Foram,
Montreal, Quebec, Canada, 21-25 June, 1999 pp.423.

15

[6] J. Brackett, Software requirements. Technical Report SEI-CM-19-1.2, Software Engineering Insti-
tute, 1990.

[7] D.R. Gilbert and A.A. Letichevsky. A universal interpreter for nondeterministic concurrent pro-
gramming languages. In M. Gabbrielli (editor), Fifth Compulog network area meeting on language
design and semantic analysis methods, Sep. 1996

[8] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, 1985.

[9] J. Hooman, Towards Formal Support for UML-based Development of Embedded Systems, Proc.
of the 3d PROGRESS Workshop on Embedded Systems, STW, pages 71–76, 2002.

[10] International Telecommunications Union. Recommendation Z. 120–Message Sequence Chart
(MSC), 1999.

[11] International Telecommunications Union. Recommendation Z. 100–Specification and Description
Language (SDL), 1999.

[12] Object Management Group. Unified Modeling Language Specification, 2.0, 2003.

[13] J.V. Kapitonova, A.A. Letichevsky, and S.V. Konozenko. Computations in APS. Theoretical Com-
puter Science, 119:145–171, 1993.

[14] J.-P. Katoen, L. Lambert. Pomsets for Message Sequence Charts, 1st Workshop of the SDL Forum
Society on SDL and MSC, SAM98, Berlin, June/July 1998.

[15] A.A. Letichevsky and D.R. Gilbert. A general theory of action languages. Cybernetics and System
Analysis, (1):16–36, Feb. 1998.

[16] A.A. Letichevsky and D.R. Gilbert. A Model for Interaction of Agents and Environments. In:
Selected papers from the 14th International Workshop on Recent Trends in Algebraic Development
Techniques. Lecture Notes in Computer Science, 1827, 311–328, 1999.

[17] A.A. Letichevsky, Y.V. Kapitonova, V.A. Volkov, V.V. Vyshemirsky, and A.A.Letichevsky, Jr.
Insertion Programming. Cybernetics and System Analysis, Kiev, 1, 2003

[18] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

[19] B. Mitchell, R. Thomson, C. Jervis. Phase Automaton for Requirements Scenarios, Proceedings of
Feature Interactions in Telecommunications and Software Systems VII, 2003, pp. 77-87, IOS Press.

[20] S. Owre, N. Shankar, and J.M. Rushby. User Guide for the PVS Specification and Verification
System. Technical Report, SRI International, 1996.

[21] F. Regensburger, A. Barnard. Formal verification of SDL systems at the Siemens mobile phone
department. In Tools and Algorithms for the Construction and Analysis of Systems. 4 th Interna-
tional Conference, ACAS’98, Lecture Notes in Computer Science, 1384, 439-455. Springer Verlag,
1998.

[22] M.A. Reniers. Message Sequence Chart : Syntax and Semantics. Eindhoven, Eindhoven, University
of Technology, 1998.

[23] 0. Shumsky, L.J. Henschen. Developing a framework for verification, simulation and testing of SDL
specifications. In M. Kaufmann and J S. Moore, editors, Proceedings of the ACL2 Workshop 2000.
University of Texas at Austin, 2000.

16

