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Abstract� A new abstract model of interaction between agents and en�
vironments considered as objects of di�erent types is introduced� Agents
are represented by means of labelled transition systems considered up
to bisimilarity� The equivalence of agents is characterised in terms of an
algebra of behaviours which is a continuous algebra with approximation
and two operations� nondeterministic choice and pre	xing� Environments
are introduced as agents supplied with an insertion function which takes
the behaviour of an agent and the behaviour of an environment as argu�
ments and returns the new behaviour of an environment� Arbitrary con�
tinuous functions can be used as insertion functions� and we use functions
de	ned by means of rewriting logic as computable ones� The transfor�
mation of environment behaviours de	ned by the insertion function also
de	nes a new type of agent equivalence 
 insertion equivalence� Two
behaviours are insertion equivalent if they de	ne the same transforma�
tion of an environment� The properties of this equivalence are studied�
Three main types of insertion functions are used to develop interesting
applications� one�step insertion� head insertion� and look�ahead insertion
functions�
Keywords� agents� behaviour� distribution� environments� interaction� se�
mantics

� Introduction

The majority of traditional theories of interaction including CCS ����� CSP ����
ACP ���� TLA ����� and more recent theories such as game semantics ���� and
tile model ���� consider interaction between agents in the environment	 However
the notion of an environment is used implicitly or its elements are introduced as
elements of process algebra expressions undistinguished from agent expressions	
In those models where the environment is considered explicitly such as programs
over shared memory or Linda based models� the notion of an environment is
very special	 In this paper we consider agents and environments as objects of
di
erent types	 Agents are represented by means of labelled transition systems
with divergence and termination� considered up to bisimilarity	 The equivalence
of agents is characterised in terms of an algebra of behaviours which is a two
sorted �actions and behaviours� continuous algebra with approximation and two
operations nondeterministic choice and pre�xing �like basic ACP�	 The notion
of an abstract agent can be introduced as a transition closed set of behaviours	
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All known compositions in various kinds of process algebras can be then de�ned
by means of continuous functions over agents	

Environments are introduced as agents supplied with functions used for the
insertion of other agents into these environments	 An insertion function has two
arguments the behaviour of an agent and the behaviour of an environment	
The value of an insertion function is a new behaviour of an environment	 The
notion of an environment gives the possibility of de�ning a new type of agent
equivalence � insertion equivalence	 Two behaviours are insertion equivalent
if they de�ne the same transformation of an environment	 Most of the known
equivalences for processes can be characterised as insertion equivalence	

In earlier publications ���� ��� ��� the model has been considered in the con�
text of language representation	 The generic �Parameterised� Action Language
�AL�� introduced there was considered as a general model of computation and
interaction covering a wide class of nondeterministic concurrent programming
languages	 The interaction semantics of AL has been de�ned in terms of trans�
formations of environment behaviours and has been used for the de�nition of a
computational semantics as well	 In ���� a new� more abstract model of inter�
action between agents and environments has been introduces	 This paper gen�
eralises the approach of previous ones� allowing the use of arbitrary continuous
functions for the de�nition of insertion of an agent into an environment	

Three main types of insertion functions are used to develop interesting appli�
cations one�step insertion� head insertion� and look�ahead insertion functions	
They are introduced by means of rewriting logic ����	 We study insertion equiva�
lence for one�step insertion using algebraic representation of agents and proving
congruence property for the main operations of behaviour algebra	 The imple�
mentation of the model on a base of algebraic programming system APS is
considered	

� Preliminaries

��� Transition systems

De�nition�� �Park ���� A transition system over a set of actions A is a set S

of states with a transition relation s
a
� s�� s� s� � S� a � A� and two subsets

S� and S� called correspondingly sets of terminal and divergent states	

The original de�nition of D	Park does not contains terminal and divergent
states	 The former is used for the de�nition of computational semantics of agents�
and the later for introducing the approximation relation and the technically
important construction of in�nite objects from �nite ones by passing to limits	

De�nition�� A binary relation R � S�S is called a partial bisimulation if for
all s and t such that sRt and for all a � A

� s � S� � t � S�
� s

a
� s� � �t��t

a
� t� � s�Rt�

� s �� S� � �t �� S� � �t
a
� t� � �s��s

a
� s� � s�Rs��



This de�nition is a slight modi�cation of the de�nition in ���	 A state s of a
transition system S is called a bisimilar approximation of t denoted as svBt if
there exists a partial bisimulationR such that sRt	 Symmetric closure of partial
bisimulation is a bisimulation equivalence denoted s�Bt	 The de�nition of partial
bisimulation can be easily extended to the case when R is de�ned as a relation
between the states of two di
erent systems� considering the disjoint union of
their sets of states	 Two transition systems are bisimilarily equivalent if each
state of one of them is bisimilarily equivalent to some state of another	

We give some consequences from this de�nition in order to help the reader
to understand it better	 The divergent state without transitions approximates
arbitrary other state	 If s approximates t and t is convergent �not divergent�
then s is also convergent� s and t have transitions for the same sets of actions
and satisfy the same conditions as for usual bisimulation without divergence	
Otherwise if s is divergent �and therefore so is t� the set of actions for which s

has transitions is only included in the set of actions for which t has transitions�
i	e	 s is less de�ned than t	

��� Behaviour algebra

A behaviour algebra �or an algebra of behaviours� over an action set A is a contin�
uous algebra ��� or an algebra with approximation �poset with a minimal element
and continuous operations �����	 It has two operations� the �rst being denoted by
� is an internal binary aci�operation �idempotent associative and commutative
operation�	 This operation corresponds to nondeterministic choice	 The second
operation is pre�xing a�u� a being an action� u being a behaviour	 The minimal
element of a behaviour algebra is denoted 		 The empty behaviour � performs
no actions and usually denotes the successful termination of a �computational�
process	 The impossible behaviour � is the neutral element for nondeterministic
choice	 There is also the impossible �empty� action 
 in A	 The identities of a
behaviour algebra are shown in Figure �	

u� v � v� u

u� v� �w � u� v� w�
u� u � u

u� � � � � u � u

��u � �

Fig� �� Relations of an algebra of behaviours

The approximation relation of the algebra of behaviours over A is a partial
order which satis�es the relations presented in Figure �	

If all relations of a behaviour algebra are consequences of those presented
in Figure � and the approximation relation is a minimal partial order satisfying
the relations in Figure � then this algebra is called a free algebra	 The elements



�v u

u v v� u�w v v �w

u v v � a�u v a�v

Fig� �� Approximation for behaviours

of the minimal �initial� sub�algebra Ffin�A� of a free behaviour algebra over A
�i	e	 a sub�algebra generated by the empty behaviour� the impossible behaviour
and the bottom element� are called �nite behaviours	 All other behaviours �of a
free behaviour algebra� are assumed to be the limits �least upper bounds� of the
directed sets of �nite elements	 The free behaviour algebra which includes all such
limits is denoted F �A�	 It is de�ned uniquely up to a continuous isomorphism	

Note that in F �A� the �xed point theorem is true� so we can use it for
constructing new behaviours from already built ones by means of equations of
the form X � F �X�� where X is a vector of variables and F �X� is an algebraic
functional� that is a functional constructed from variables and constants � and
	 by means of nondeterministic choice and pre�xing	 An alternative approach
is to consider F �A� as a �nal coalgebra and use coinduction for reasoning and
constructing behaviours ���	

Each behaviour u � F �A� can be represented in the form

u �
X

i�I

ai�ui � � ���

where ai are di
erent from impossible action� ui are behaviours� I is a �nite
�for �nite elements� or in�nite set of indices� � � ��	��� 	� � �termination

constants�	 If all summands in the representation ��� are di
erent then this rep�
resentation is unique up to the associativity and commutativity of nondetermin�
istic choice	 A behaviour u is called divergent if � �	��� 	 and convergent

otherwise	 Note that u is always divergent for in�nite I as a limit of �nite diver�
gent sums	 Convergent in�nite sums can be introduced by extending the notion
of a �nite element	 Namely� termination constants� pre�xed �nite elements and
arbitrary ��nite or in�nite� sums of �nite elements are also considered as �nite
elements	

��� Behaviours and transition systems

For each state s � S of a transition system let us consider a behaviour beh�s� �
us �of a system in a given state s� de�ned as a component of a minimal solution
of a system

us �
X

s
a
�s�

ai�us� � �s ���



s �� S� � S� � �s � �

s � S� n S� � �s � �

s � S� n S� � �s ��

s � S� � S� � �s � �� �

Fig� �� Termination constants for the behaviour of a system in a given state

where termination constants �s are de�ned in Figure �	
A set U of behaviours is called transition closed if from a�u�v � U and a �� 


it follows that also u � U 	 Each transition closed set U can be considered as a
set of states of a transition system with transitions a�u� v

a
� u� a �� 
� the set

of terminal states U� � fu � v ��g and divergent states U� � fu � v� 	g	
Therefore the relations vB and �B can be considered for behaviours as well as
for the states of a transition system	

Theorem�� Let s and s� are states of a transition system� u and v are be�

haviours� Then�

�� svBs
� � us v us� �

�� s�Bs
� � us � us� �

�� u � v � u�Bv�

In the following we shall use � instead of �B 	

��� Compositions of behaviours

There are many useful compositions de�ned in concurrency theory as operations
on processes or agents represented as transition systems	 The majority of them
preserve bisimilarity and can therefore be de�ned as operations on behaviours	
Another useful property of these compositions is continuity	 To de�ne a continu�
ous function over behaviours it is su�cient to de�ne it on �nite behaviours and
extend to all others by passing to limits	 De�nitions in the style of SOS seman�
tics ���� or employing conditional rewriting systems always produce continuous
functions	 In this section two main compositions � sequential and parallel � will
be de�ned	

Sequential composition of behaviours u and v is a new behaviour de�
noted as �u� v� and de�ned by means of the inference rules and equations pre�
sented in Figure �	

In the following we shall also use the notation uv instead of �u� v� and �au�
instead of �a�u�	 This notation is not ambiguous if we identify an action a with
the behaviour a��	

Parallel composition of behaviours	 Up to now the set of actions A

was considered as a �at set without any structure	 Now we de�ne an algebraic



u
a

� u
� � u� v�

a

� u�� v�

��u� � u��� � u� ��u� � �� ��u� ��

Fig� �� Sequential composition of behaviours

structure on this set introducing the combination a� b of actions a and b	 This
operation is commutative and associative with the empty action as annulator
�a � 
 � 
�	 Thus the set A becomes an algebra of actions	

The inference rules and equations for the de�nition of the parallel composi�
tion ukv of behaviours u and v are presented in Figure �	 Commutativity and
associativity of parallel composition are consequences of this de�nition	

u
a

� u�� v
b

� v�� a 	 b �� �

ukv
a�b
� u�kv�

u
a

� u
� � ukv

a

� u
�kv� ukv ���

a

� u
�

v
a

� v
� � ukv

a

� ukv�� u���kv
a

� v
�

u���kv��� � u���kv ��� ��

u� ��kv � u� ��kv��

ukv� �� � ukv� ����

Fig� �� Parallel composition of behaviours

� Agents and environments

The previous section contains fairly standard de�nitions and constructions which
are used as the mathematical foundation of concurrency theory	 Our approach
is close to that of ACP ���� and we use the continuous algebra of behaviours
as a domain for the characterisation of transition systems up to bisimilarity
instead of power�domains as in ��� or ����	 In this section we introduce the main
construction of our theory� namely the insertion of an agent into an environment	

An abstract agent U over an action algebra A is a transition closed set of
behaviours over A	 An agent can be initialized by distinguishing the set U� � U

of possible initial states so that each other state of an agent is reachable from
some of the initial states	



Usually agents are represented by a transition systems and are identi�ed
with these systems	 In this case the corresponding abstract agent is the set of all
behaviours of the states of its representation	 Two representations of the same
agent are therefore bisimilarily equivalent	

The set of behaviours of an agent can be considered as a transition system
as well �the standard representation of an agent� and we can speak about the
set of states when considering the behaviours of an agent	 We should distinguish
between an agent as a set of states or behaviours and an agent in a given state	
In the latter case we consider each individual state or behaviour of an agent as
the same agent in a given state	

An Environment E is an agent over an environment algebra of actions C

with an insertion function	 The insertion function Ins of an environment is a
function of two arguments Ins�e� u� � e�u�	 The �rst argument e is a behaviour
of an environment� the second is a behaviour of an agent over an action algebra
A in a given state u �the action algebra of agents can be a parameter of an
environment�	 An insertion function is an arbitrary function continuous in both
of its arguments	 The result is a new behaviour of the same environment	

For the de�nition of insertion functions we can use the same methods as
for the de�nition of operations over behaviours� but the semantics of agents is
di
erent	 They are considered up to an equivalence which is in general weaker
than bisimilarity	 This is insertion equivalence which depends on an environment
and its insertion function	 Two agents �in given states� or behaviours u and v

are insertion equivalent with respect to an environment E� written u �E v if for
all e � E e�u� � e�v�	 Each agent u de�nes the transformation Tr

E
u  E � E of

its environment TrEu �e� � e�u� and u �E v i
 Tr
E
u � Tr

E
v 	 We shall also use the

notation �u� for TrEu 	
After inserting an agent into an environment� the new environment can accept

new agents to be inserted� and the insertion of several agents is something that
we will often wish to describe	 We shall use the notation

e�u�� � � � � un� � e�u�� � � � �un�

for the insertion of several agents	
Note that in this expression u�� � � � � un are agents inserted into the environ�

ment simultaneously� but the order can be essential for some environments	 If
you want agent u to be inserted after agent v� you must compute some transition
e�u�

a
� s and consider expression s�v�	 Some environments can move indepen�

dently� suspending the movement of an agent inserted into them	 In this case if
e�u�

a
� e��u� then e��u� v� describes the simultaneous insertion of v and u into the

environment in a state e� as well as the insertion of u at the moment when an
environment is in state e and after this the insertion of v	

An environment e�u� with containing an inserted agent u can be used for the
insertion of another agent using the insertion function Ins� or can be considered
as a new agent which can be inserted into a new environment e� with another
insertion function Ins

�	 In this case e��e�u�� � Ins
��e�� Ins�e� u��� and we can

associate with the behaviour u not only transformation Tr
E
u but also a function

F � Tr
E�E�

�E�

u  E � E� � E� de�ned by equation F �e� e�� � e��e�u��	



In the sequel the notation e�u� will be used not only for the case when u and
e are behaviours �or expressions which take values in the behaviour algebra� but
also states of transition systems used to represent corresponding behaviours	 In
this case we must prove the correctness of an expression� or its independence
from the representation of a state� that is e � e� � e�u� � e��u�	

Let us now consider some important cases of environments and insertion
functions	

��� Parallel and sequential environments

The insertion function for a parallel environment is

e�u� � eku

In this case all agents inserted into an environment interact in parallel and
e�u�� � � � � un� does not depend on the order of insertion	

Another important case is a sequential environment

e�u� � eu

In this case the performance of agents is sequential	
If � � E then the insertion equivalence of agents is a bisimulation	 A weaker

equivalence can be obtained if the de�nition of the insertion function is modi�ed
in the following way

e�u� � ��eku�

for a parallel environment or

e�u� � ��eu�

for a sequential one	 In this modi�cation � is an arbitrary continuous transfor�
mation of E	 The restriction function of CCS or the hiding function of CSP or
their combinations are useful special cases of �	

��� One�step insertion

The class of one�step insertion functions consists of insertion functions that de�ne
the interaction between environment and inserted agents in such a way that the
current observable action of a resulting environment depends on the behaviour
of an environment and agents in the current moment of time only �one�step
behaviour�	 This dependency is de�ned by means of a hiding function h  A �
C � �C �in ���� the similar function was called a residual function�	 The formal
de�nition is presented in Figure �	 In this �gure �u is a termination constant in
the canonical representation of u �

P
ai�ui � �u� � is an arbitrary termination

constant	
In order to prove the properties of one�step insertion it is useful to introduce

its algebraic representation	 Let us consider the canonical forms of the state �be�
haviour� e �

P
i�I ci�ei��e of an environment and the state u �

P
j�J aj�uj��u



u
a

� u�� e
c

� e�� d � ha� e�

e�u�
d

� e��u��

e
c

� e
� � e�u�

c

� e
��u�

e�u��� � e�u��� � e� e�u� �� � e�u� �� � ek �� e� ���u� � e�u�� �

��u� � �k�u

Fig� �� One�step insertion function

of an agent	 The following representation of e�u� is a consequence of its de�nition
in Figure �

e�u� �
X

d�h�aj �ci�

d�ei�uj� �
X

i�I

ci�ei�u� � ���u� e� ���

where ������ � e� � ���� e������ � e�� ���� e� � �k�e� ���� e� � e� ��	� e� � ek 		
This representation provides the computation of pre�xing and nondeterministic
choice

e�a�u� �
X

d�h�a�ci�

d�ei�u� �
X

i�I

ci�ei�a�u� � ���� e� ���

e�u� v� � e� �u� � e � �v� �
X

i�I

ci�ei�u� v� � ���u� e� � ���v� e� ���

where

e � �u� �
X

d�h�aj �ci�

d�ei�uj�

The equations ��� and ��� show that transformations �a�u� and �u � v� can
be expressed in terms of �u� and �v� �as a minimal �xed point�	 Thus one�step
insertion equivalence is a congruence �with respect to pre�xing and nondeter�
ministic choice� and these equations can be used for the de�nition of pre�xing
a��u� � �a�u� and nondeterministic choice �u�� �v� � �u�v� on the set of continu�
ous transformations of E	 As a result the mapping u� �u� is a homomorphism	

A natural special case of a one�step insertion environment is a memory over
some set R of names or variables	 A state of this environment is a mapping
e  DR � DR	 Actions c � C correspond to statements over R such as �parallel�

assignments and conditions	 If c is a statement then e
c
� e� is a functional relation

on E� and if c is a condition then e
c
� e i
 c is true on e	 A combination over the

set of actions c � c� can be de�ned as an action equivalent to the simultaneous
performance of c and c�	 In this case c � c� �� 
 i
 c and c� are consistent	
Consistency can be de�ned for the synchronous or asynchronous combination of
actions� and for synchronous combination consistency means that each of two
statements c and c� change the same variables	 For asynchronous combination



a stronger condition is used neither of two statements can use the variables
changed by the other one	

A hiding function h for a memory environment can be de�ned in the following
way h�a� c� � fdjc � a � dg� if a �� c and h�a� a� � f�g� where � is a special
atomic action �empty statement� such that � � a � a � � � a for an arbitrary

action a and e
�
� e	 A memory environment extended by input�output and

interface statements can be used for modeling �deterministic or nondeterministic�
sequential imperative programs over shared memory	

A useful extension of one�step insertion can be obtained by introducing tools
for making some of the interactions of agents and environments unobservable	
For this purpose let us introduce a special symbol o to denote the unobservable
action and let h  A� C � C � fog	 De�ne the unlabeled transitions on the set
of states e�u�

u
a
� u�� e

c
� e�� o � h�a� c�

e�u�� e��u��

and the rule

e�u�
�
� e��u��� e��u��

d
� e���u���

e�u�
d
� e���u���

A one�step environment with these two extra rules is called an extended one�
step environment	 For this environment a summand

P
o�h�aj �ci�

ei�uj� must be

added to representation ��� and the congruence properties for the operations of
behaviour algebra are still valid	

��� Head insertion

When we study the interaction of a client and a server the latter can be con�
sidered as the main part of an environment into which several clients can be
inserted	 An environment in this case can observe only the current action of
a client �query� message� pushing buttons and so on�	 At the same time the
server knows its internal state and can make a decision by analysing its future
behaviour	 This situation can be captured by head insertion	

A head insertion function is de�ned by means of three systems of rewriting
rules	 The rules of the �rst system have the form

�a�G�x�� x�� � � ���� �d�G��x�� x�� � � ���

where a � A� d � C� G�x�� x�� � � �� and G��x�� x�� � � �� are terms of a behaviour
algebra over C with variables x�� x�� � � � considered up to the identities of this
algebra	 The relation de�ned by this system is called the interaction move and

is denoted by �a� e�
interact

� �d� e�� The rule for this relation is

�a�G�x�� x�� � � ���� �d�G��x�� x�� � � ���

�a�G�e�� e�� � � ���� �d�G��e�� e�� � � ���



The rules of the second system have the form

�a�G�x�� x�� � � ���� G��x�� x�� � � ��

They de�ne the hidden move relation which is denoted as �a� e�
hidden
� e� The

rules of the third system have the form

G�x�� x�� � � ��� �d�G��x�� x�� � � ���

They de�ne the environment move which is denoted as �a� e�
env�move

� e�	

u
a

� u�� a� e�
interact

� d� e��

e�u�
d

� e��u��

u
a

� u�� a� e�
hidden

� e�

e�u�� e��u�

e
env�move

� d� e��

e�u�
d

� e��u�� e�u���
d

� e�� e�u� ��
d

� e�k �

e�u�
�

� e��u��� e��u��
d

� e���u���

e�u�
d

� e���u���

e�u�
d

� e��u�� 
 e�u�
�
� e��u��� f v e� f �u� ��

f �u� ��

��u� � �k�u

Fig� �� Head insertion function

The rules for transitions of e�u� are presented in Figure �	 They include the
unlabeled transitions de�ned by the hidden moves	 An expression of the type

s �� means that there is no transitions s
d
� s� or s� s�	

The insertion function de�ned by the rules of Figure � is continuous	 In order
to prove this statement note that the knowledge of all �nite approximations of

e and u is su�cient for computing the transition e�u�
d
� e��u��	

��� Look�ahead insertion

A more general situation in comparison with head insertion occurs if an envi�
ronment contains the interpreter for some programming language and an agent
is a software agent written in this language	 In this case an environment can
analyse not only its own future behaviour but the behaviour of an interpreted



program as well	 This situation can be described by means of look�ahead inser�
tion	 This function is also de�ned by means of rewriting rules of only one type
� interaction rules

�F �x�� x�� � � ��� G�y�� y�� � � ���� �d� F ��x�� x�� � � ��� G
��x�� x�� � � ���

These rules de�ne an interaction relation denoted as

�u� e�
interact

� �d� u�� e��

It can be proved that this general type of rewriting rules also covers hidden
and environment moves �if we admit the possibility of an in�nite number of
rules which may be required to implement the transitive closure of unlabeled
transitions�	

F x�� x�� � � ���Gy�� y�� � � ���
interact

� d�F �x�� x�� � � ���G
�y�� y�� � � ���

Ge�� e�� � � ���F u�� u�� � � ���
d

� G�e�� e�� � � ���F �u�� u�� � � ���

e�u� � Ge�� e�� � � ���F u�� u�� � � ���
d

� G�e�� e�� � � ���F
�u�� u�� � � ���� v v u� f v e� f �v� ��

f �v� ��

��u� � �k�u

Fig� �� Look�ahead insertion function

The rules for look�ahead insertion function are presented in Figure �	 A look�
ahead insertion function is also continuous� the proof is the same as that for a
head insertion	

��� Distributed environments

We can obtain multilevel distributed structures using recursive insertion and
di
erent environments used on di
erent levels	 Let E� be some environment used
as a local environment shared by several agents �shared memory or constraint
store� for instance�	 An environment e�u�� � � � � un� can be closed by applying to
it some continuous function � and changed to an agent which can be inserted
to the environment E� of the next level	 Several agents v�� � � � � vm constructed
this way can be inserted to E� and a new environment e�v�� � � � � vm� can be
considered as a distributed environment with local components �environments�
v�� � � � � vm	 This construction can be repeated recursively	 Look�ahead insertion
can use the low level insertion function for computation of transitions of low
level components	



� Insertion equivalence

In this section we shall study a one�step equivalence	 First the notion of nor�
malised behaviour representation will be introduced and the criteria of one�step
insertion equivalence of agents will be established	 Then we shall study the con�
gruence properties of sequential and parallel composition of agents	

Let E be a one�step environment with a hiding function h	 First� let us note
that if u �E v that is �u� � �v� then �au� bv� � ��a� b�u�	 This relation is also
valid for an in�nite number of summands

�
X

i�I

ai�ui� � ��
X

i�I

ai�u�

if all ui are equivalent to u	 A behaviour which is a sum of actions will be called a
one�step behaviour	 An arbitrary behaviour can be represented up to equivalence
�wrt E� as a sum X

i�I

piui � � ���

where pi are one�step behaviours and �ui� �� �uj� if i �� j	 To obtain this represen�
tation for the behaviour

P
i�I ai�ui� � it is su�cient to partition all summands

ai�ui collecting together those of them for which ui are mutually equivalent and
apply the equation above	

Let us extend the hiding function to one�step behaviours by de�ning for
p �
P

i�I ai� h�p� c� �
S
i�I h�ai� c� and h�p� �

S
c�C h�p� c�	 For a one�step

behaviour p if h�p� � 
 then �pu� � ��� and �pu � v� � �v�	 Therefore� the
representation ��� can be restricted so that for all i � I h�pi� �� 
	 Such a
representation is called a normal form of an agent for the environment E	

De�nition�� A one�step environment is called regular if
�	 For all a � A and c � C c �� h�a� c��
�	 E is a subalgebra of F �C�	

One�step behaviours p and q are called equivalent wrt a hiding function h

�p �h q� if for all c � C h�p� c� � h�q� c�	 If p and q are equivalent then �pu� � �qu�	

Theorem�� For a regular one�step environment the normal form of a behaviour

is unique up to the commutativity of nondeterministic choice and equivalence of

the one�step behaviour coe	cients�

To prove the theorem let us �rst prove that if h�p� �� 
 and �pu� � �qv� then
p �h q and �u� � �v� �the inverse is evident�	 Let d � h�p�� then for some a � A

and c � C d � h�a� c�	 Let us take an arbitrary state �behaviour� e � E	 Since

E is an algebra� ce � E	 We have c �� d therefore �ce��pu�
d
� e�u�	 From the

equivalence of pu and qv it follows that �ce��pu� � �ce��qv� � �ce��qv�
d
� e�v�

and this is the only transition from �ce��qv� labelled by d	 Therefore d � h�q� and
e�u� � e�v�	 From the arbitrariness of e we have �u� � �v�	 Symmetric reasoning
gives also d � h�q�� d � h�p�� p �h q	



Next we show that if u �
P

i�I piui��u� v �
P

j�J qjvj��v are two normal
forms and �u� � �v� then for each i � I there exists j � J such that �piui� � �qjvj �
and from symmetry these forms are the same up to the commutativity and

equivalence of coe�cients	 Again� as above if �ce��piui�
d
� e�ui�� c �� d there

exists only one j such that �ce��qjvj�
d
� e�vj � and vice versa	 Therefore pi �h

qj� �ui� � �vj� and �piui� � �qjuj�	 The equality of �u and �v is obvious	 �

Sequential composition has a congruence property for regular one�step envi�
ronments� as shown by the following theorem	

Theorem	� Let E be a regular one�step environment� Then �u� � �u�� � �v� �
�v��� �uv� � �u�v���

To prove this theorem we prove that the relation e�uv� �R e�u�v�� de�ned for an
arbitrary e � E� u� v� u�� v� � F �A� by the condition �u� � �u�� � �v� � �v�� is a
bisimilarity	 In order to compute transitions� normal forms for the representation
of agent behaviours must be used	 We omit the details of this proof	

Parallel composition does not in general have a congruence property	 To �nd
the condition when it does� let us extend the combination of actions to one�step
behaviours assuming that

p� q �
X

p�a�p�� q�b�q�

a� b

The equivalence of one�step behaviours is a congruence if h�p� � h�q� � h�p �
r� � h�q � r�	

Theorem
� Let E be a regular one�step environment and the equivalence of

one�step behaviours is a congruence� Then �u� � �u����v� � �v��� �ukv� � �u�kv���

As for the previous theorem we prove that the relation e�ukv� �R e�u�kv�� is de�
�ned for an arbitrary e � E� u� v� u�� v� � F �A� by the condition �u� � �u��� �v� �
�v�� is a bisimilarity	 To compute transitions� normal forms for the representa�
tion of agent behaviours must be used as well as the algebraic representation of
parallel composition

ukv � u� v � ubbv � vbbu

The details are also omitted	

� Implementation

The model described in the paper has been implemented in algebraic program�
ming system APS ���� based on rewriting logic	 The Action Language has been
used as a language for the description of agents	 The main compositions in
the Action Language �AL� are nondeterministic choice� parallel and sequential
compositions	 Actions are considered as primitive statements	 The syntax and
semantics of combinations and other operations in the algebra of actions are



parameters of AL which is considered as a generic model for a class of nondeter�
ministic concurrent programming languages	 Procedure calls are another kind of
primitive statement	 The syntax of these kind of statements is also a parameter
of AL as well as their intensional semantics which is de�ned by means of the
unfold operator represented in the form of a rewriting system �recursion�	 The
intensional semantics of a program is de�ned as the behaviour of an agent� and
the interaction semantics is a parameter of a language and de�ned by means of
rewriting rules for the insertion function for a given environment	

The language also has the possibility to describe variables and localising
them within local program components which can be used for the description of
distributed agents	 Variables are considered as variables of a memory state or a
constraint store considered as a local environment for agents� and the meaning
of a local component is an agent inserted into its local environment	 The parallel
composition of local components is considered as a set of agents inserted into
the higher level environment which is a shared memory or a shared constraint
store	

The �rst implementation of AL by means of an interpreter written in APLAN
�the source language of APS� has been described in ���	 The next step was the
development of a simulator which has been used to study the semantics of con�
current constraint and probabilistic concurrent constraint languages ����	 These
early implementations used one�step insertion only	 The current implementation
is based on head insertion and can be easily extended to look�ahead insertion	

The simulator is an interactive program which can explore the behaviour
of an environment with agents inserted into it step�by�step� with branching at
nondeterministic points and return back to previous states	 In automatic mode
it can search for states with speci�c properties� such as successful termination
or dead�lock states	

� Conclusions

A model of interacting of agents and environments based on insertion functions
has been presented in this paper	 The set of behaviour transformations has
been introduced as a domain for the semantic description of agents inserted
into a corresponding environment	 This description re�ects the interaction of
agents and environments and mathematically is represented by a continuous
mapping from behaviours to transformations	 For a regular one�step insertion
this mapping is a continuous homomorphism	

The model has been implemented in the algebraic programming system APS
and this implementation is being used to study interaction and computation in
declarative programming paradigms	
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