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Abstract 
 

The paper describes insertion modeling methodology, its implementation and applications. Insertion modeling is a 
methodology of model driven distributed system design. It is based on the model of interaction of agents and environments 
[1-2] and use Basic Protocol Specification Language (BPSL) for the representation of requirement specifications of 
distributed systems [3-6]. The central notion of this language is the notion of basic protocol – a sequencing diagram with 
pre- and postconditions, logic formulas interpreted by environment description. Semantics of BPSL allows concrete and 
abstract models on different levels of abstraction. Models defined by Basic Protocol Specifications (BPS) can be used for 
verification of requirement specifications as well as for generation of test cases for testing products, developed on the basis 
of BPS.  

Insertion modeling is supported by the system VRS (Verification of Requirement Specifications), developed for 
Motorola by Kiev VRS group in cooperation with Motorola GSG Russia. The system provides static requirement checking 
on the base of automatic theorem proving, symbolic and deductive model checking, and generation of traces for testing with 
different coverage criteria. All tools have been developed on a base of formal semantics of BPSL constructed according to 
insertion modeling methodology.      

The VRS has been successfully applied to a number of industrial projects from different domains including 
Telecommunications, Telematics and real time applications. 
 
Introduction 
  

Insertion modeling is the technology of system design founded on the theory of interaction of 
agents and environments. This theory has been developed in [1-2]. It is based on process algebra and is 
intended for the unification of different models of interaction and computation (such as CCS, CSP, π-
calculus, mobile ambients etc.). In the last years this approach has been successfully applied to the 
problems of the verification of requirement specifications [3-5] for distributed concurrent systems from 
different subject domains including Telecommunications, Telematics, distributed computing and 
others. These applications are supported by the system VRS developed for Motorola by Kiev VRS 
group. In combination with TAT system developed in Motorola Software Group Russia it supports also 
the generation of test cases from requirement specifications.        

We use the basic protocol specifications [4-6] to formalize requirement specifications for 
distributed concurrent systems. Basic protocols are parameterized MSCs (Message Sequence Charts) 
with pre- and postconditions interpreted on the states of an environment with inserted agents. 
Semantically basic protocol can be considered as a statement )( βα >®<∀ ux  of some kind of 
dynamic logic. In this statement x is a (typed) list of parameters, α  and β  are precondition and 
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postcondition, correspondingly, and u is a process defined by the MSC diagram. Preconditions and 
postconditions are formulas of first order multisorted language called the Basic Language. This 
language is used to describe the properties of the states of a system represented as a composition of 
environment and agents inserted into this environment. The evolving part of a system is represented by 
distinguished functional and predicate symbols from the signature of the basic language called the 
attributes of an environment. The process u describes finite behavior of an environment with inserted 
agents. When parameters of a basic protocol are fixed, then we can speak about instantiated basic 
protocol. 

The purpose of this paper is to represent the formal definitions of the main concepts of the 
Basic Protocols Specification Language (BPSL), define the notion of implementation of Basic 
Protocols Specifications (BPS) and to give the high level description of the tools of the VRS system. 
Each BPS consists of two parts: the environment description and the set of basic protocols. 
Environment description determines the signature of basic language and the restrictions on possible 
interpretations of this signature (some part of a signature can be interpreted at the very beginning, for 
example, numerical functions and predicates, or constructors for the states of agents). The signature can 
also include some constructors for actions of agents inserted into environment. The set of basic 
protocols defines the requirements to the behavior of a system and implicitly defines the insertion 
function for the given environment. The requirements informally can be expressed in the following 
way: If the precondition of some instantiated protocol is valid and the process of this protocol started 
then after successful termination of this process the postcondition is valid.  

The semantics of BPS is defined by the variety of possible implementations of BPS that satisfy 
the informal property above. On abstract level an implementation is represented as an attributed 
transition system, that is a labeled transition system with transitions labeled by actions and states 
labeled by attribute labels.  

We distinguish among concrete and abstract implementations. A concrete implementation 
assumes the concrete interpretation of a signature of basic language, and the states of concrete 
implementations are labeled by the attribute valuations that are the partial mappings from constant 
attribute expressions (expressions of a type ,...),( 21 aaf  where f is an attribute symbol and ,..., 21 aa  are 
constant terms of corresponding types) to their values. Each closed (no free variables) formula of basic 
language has the value on each state of a concrete implementation. Basic protocols can be also 
considered as formulas, but formulas of dynamic logic that express the main behavioral requirements. 
These formulas must be valid on any state of a concrete implementation and arbitrary values of 
parameters. Also we would like to specify concrete implementations for a case of concurrent 
performance of several basic protocols. To catch the situation the permutability relation for attributed 
actions is added to BPS and is used for the definition of so called partially sequential composition of 
processes. For empty permutability relation this composition coincides with sequential composition and 
for the case when all actions are permutable it is a parallel composition. 

For abstract implementations we do not use concrete interpretation of a basic language 
mentioned above. An abstract implementation of BPS is defined as an attributed transition system with 
validity relation between the attribute labels and the formulas of the basic language. Abstract and 
concrete implementations are partially ordered by two abstraction relations: direct and inverse. These 
relations were studied in [6]. They generalize many abstractions referred to in [8-9] and were used for 
the definition of two abstract implementations of a system of basic protocols that cover concrete 
implementations. The first one is used for the verification, the second one – for generating of tests. 

The main tools of the VRS system are divided into two groups: static tools and dynamic tools. 
Static tools include checkers for consistency and completeness of preconditions, safety checker, time 
checker and annotation checker. All these tools are based on deductive system, which contains the 
universal prover for the first order predicate calculus and special provers for linear numeric arithmetic 
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(over real numbers and integers), enumerated and symbolic data types. Deductive system is capable for 
extension by integrating new specialized provers and solvers for special theories. 

Dynamic tools include concrete and symbolic trace generators (CTG and STG). Both are 
assigned for simulating the behavior of models of a system defined by BPS by generating their traces in 
the system state space. For CTG the state space is generated in a traditional way by the valuation of 
attributes. The generation of traces is controlled by the goal state condition, safety conditions checked 
along traces, and some other means and heuristics that bound the search space. The states for STG are 
symbolic. Like as in symbolic model checking they are defined by logic formulas and symbolic 
computations in combination with deduction are used for computing transitions. The BPS used for 
concrete trace generation can be used  for symbolic trace generation as well.  

The paper is structured as follows. First we give the general introduction to insertion modeling 
based on the model of interaction of agents and environments and describe the environments for MSC. 
Then the main features of the Basic Protocol Specification Language are described. The semantics of 
this language for concrete and abstract implementations are defined and used then for the definition of 
requirements for CTG and its high level description. Then we describe the main algorithms used for the 
static requirements checking. After the high level description of STG we define the notion of 
abstraction and prove the theorem about the connection between concrete and abstract 
implementations. We also describe some tools for tests generation. The last section contains the 
conclusions and the comparison with related approaches.             

 
Insertion modeling 
 

Insertion modeling is the development and investigation of distributed concurrent systems by 
means of representing them as a composition of interacting agents and environments. Both agents and 
environments are attributed transition systems, considered up to bisimilarity, but environments are 
additionally provided with insertion function used for the composition and characterizing the behavior 
of environment with inserted agents. Attributed transition systems are labeled transition systems such 
that besides the labels of transitions called actions, they have states labeled by attribute labels. If s is a 
state of a system, then its attributed label will be denoted as al(s). A transition system can be also 
enriched by distinguishing in its set of states S the set of initial states SS Í0  and the set of terminal 
states SS Í∆ . For attributed transition system we use the following notation. ss a ¢¢¾®¾ :: αα  means 
that there is a transition from the state s with attributed label LÎα  to the state s΄ labeled by attributed 
label LÎ¢α , and this transition is labeled by action Aa Î . Therefore an  enriched attributed system S 
can be considered as a tuple   

>®´´Í< ∆ LSSASTSSLAS :al,,,,,, 0  
A pair >< LA ,  of actions and attributed labels is called the signature of a system S. We also 
distinguish a hidden action τ  and hidden attributed label 1. In the difference from other actions and 
attributed labels these hidden labels are not observable.  

Behaviors. Each state of a transition system is characterized up to bisimilarity by its behavior 
represented as an element of behavior algebra (a special kind of a process algebra). The behavior of a 
system in a given state for the ordinary (labeled, but not attributed) systems is specified as an element 
of a complete algebra of behaviors F(A) (with prefixing a.u, non-deterministic choice u+v, constants 0, 
∆ , ⊥ , the approximation relation     , and the lowest upper bounds of directed sets of behaviors) [2]. In 
the sequel we shall use the term process as a synonym of behavior. 

For attributed systems attributed behaviors should be considered as invariants of bisimilarity. 
The algebra >< LAU ,,  of attributed behaviors is constructed as a three sorted algebra. The main set is 
a set U of attributed behaviors, A is a set of actions, L is a set of attribute labels. Prefixing and non-
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deterministic choice are defined as usual (nondeterministic choice is associative, commutative, and 
idempotent). Besides the usual behavior constants 0 (deadlock), ∆  (successful termination) and ⊥  
(undefined behavior), the empty action τ is also introduced with the identity 

uu =.τ  
The operation Uu Î):(α  of labeling the behavior Uu Î  with an attribute label LÎα  is added. The 
empty attribute label 1 is introduced with the identity 

uu =:1  
The approximation is extended to labeled behaviors so that 

vuvu     ):(    ):( <Ù=Û< βαβα . 
Constructing a complete algebra F(A,L) of labeled behaviors is similar to the constructing the 

algebra F(A). Each behavior u in this algebra has a canonical form: 
u

Jj
jj

Ii
ii uauu εα ++= åå

ÎÎ

.: , 

where τα ¹¹ ji a,1 , uε  is a termination constant ( ⊥+∆⊥∆ ,,,0 ), all summands  are different and 
behaviors iu  and ju  are in the same canonical form.  

Behaviors, i.e., elements of the algebra F(A,L) can be considered as the states of an attributed 
transition system. The transition relation of this system is defined as follows: 
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A set E of behaviors is called transition closed if EuuuEu a Î¢Þ¢¾®¾Î , . 
Ordinary labeled transition systems are considered as a special case of attributed ones with the 

set of attribute labels equal to {1}, and the algebra F(A) is identified with F(A,{1}). 
Insertion function. Environment >< ϕ,,,,, MALCE  is defined as a transition closed set of 

behaviors ),( LCFE Í  with insertion function EMAFE ®´ ),(:ϕ . The only requirement for 
insertion function is that it must be continuous w.r.t. approximation relations defined on E and F(A,M). 
Usually the behaviors of environment are represented by the states of a transition system considering 
them up to bisimilarity. The state ),( ueϕ  of an environment resulting after agent insertion (identified 
with the corresponding behavior)   is denoted as ][ue  or ][ue ϕ  to mention insertion function explicitly, 
and the iteration of insertion function as ]]...)[])[[(...(],...,,[ 2121 mm uuueuuue = . Environments can be 
considered as agents and therefore can be inserted into a higher level environments with another 
insertion functions, so the state of multilevel environments can be described for example by the 
following expression: ,...],...],[,...],,[[ 2

2
1
2

22
1

1
1

1 uueuuee ψψϕ . The most of insertion functions considered in 
this paper are one-step or head insertion functions. Typical rules for the definition of insertion function 
are the following (one-step insertion): 

   
][][
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ueue

uuee
c
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¢¢¾®¾
¢¾®¾¢¾®¾       (1)                                                                                                            

    
][][ ueue

ee
c

c

¢¾®¾
¢¾®¾      (2) 

The first rule can be treated as follows. Agent u ask for permission to perform an action a, and if there 
exist an a-transition from the state e the performance of a is allowed and both agent and environment 
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send message  (i: m to j) 

  receive message  (i: m from j) 
  local action   (i: action b) 
  instance start  (i: instance) 
  instance stop  (i: stop) 
  condition   (J: condition y) 
  local condition  (i: cond y(J)) 
 

Fig.1 

come to the next state with observable action c of environment. The second rule describes the move of 
environment with suspended move of an agent. The additivity conditions usually are used:  

][][][ veuevue +=+  
][][])[( ufueufe +=+  

The rules (1-2) can be also written in the form of rewriting rules: 
fuecuaea +¢¢=¢¢ ][.].)[.(  

guecuec +¢=¢ ][.])[.(  
MSC environment. The standard semantics of MSC diagrams is defined as process algebra 

semantics [7-8], so that the meaning of MSC is the set of traces of a process over the set of events used 
in MSC. The process algebra proposed by M.A.Reniers for this purpose was very complicated and far 
from implementations. An alternative approach has been developed in [9-10] where insertion semantics 
of MSC has been defined. The main difference from the Reniers semantics is that we consider 

branching time instead of linear and synchronizing treatment of conditions and references.  We shall 
use this semantics as intermediate semantics for basic protocols so let us consider it here. 

We use in basic protocols only simple MSC, that is MSC with the following constructs: 
instances, conditions, messages, coregions, and local actions. Before inserting MSC B to the MSC-
environment it is converted to the process nppBproc ||...||)( 1=  where npp ,...,1  are sequential 
compositions of events corresponding to the instances of a diagram (parallel composition must be used 
for coregions) in the same order as on instances.  Events are considered as actions and these actions are 
message actions, local actions, instance actions and local conditions used instead of ordinary conditions 
sharing several instances. Parallel composition is defined by means of interleaving.  We use the 
notations for events as in [9] (Fig.1).  

The process over the actions listed in this figure is called MSC-process and MSC-process 
without local conditions is called reduced MSC process.  

 
 
 
 
 
 
 
 
 
 
 
 

c b 

y 

m 
n 

 z 

Fig.2 
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For example, if B is a diagram of Fig.2, then  

 proc(B)=(  
  (b:instance).(b:cond y{b,c}).(b:m to c). (b:n to c).(b:cond z{b,c}).(b:stop) || 
   (c:instance).(c:cond y{b,c}).(c:m from b). (c:n from b).(c:cond z{b,c}).(c:stop) 
 ). 
 The state of MSC-environment is a triple of functions e = (Ο, Σ, Υ) (empty environment, no 
inserted agents) or the expression ],...,,[ 21 muuue , where e is an empty environment and agents 

muuu ,...,, 21  are MSC-processes. The states of MSC environment are unlabeled. The function Ο is a 
partial function of three arguments m, i, j, where m is a message expression, and i and j are instances. 
This function yields values in the set of nonnegative integers. Equation Ο(m, i, j) = k means that earlier 
k message events (i : m to j) occurred for which there are no corresponding receiving message events 
pending. Function Σ is a partial function of two arguments y and J. The first argument is a condition 
expression, the second is a set of instances. The value Σ(y, J) represents a nonempty subset of the set J. 
Σ(y, J) = I means that earlier a control event i : cond y(J) had been executed, for all instances Ji Î . 
The condition event is attached to all instances in J, and Σ(y, J) is the set of all instances which have 
already been synchronized by the condition y. The last component Υ of a triple is a set of all instances 
that had already started. This explanation results in the following definition of environment transitions. 
For empty environment e a transition 

ee a ¢¾®¾  
is possible in the following cases: 
1. a = (i: m to j), 1),,(.),,(., +=¢Î jimejimei OOU  
2. a = (i: m from j),  1),,(.),,(., −=¢Î jimejimei OOU  
3. a = (i: action b), ee =¢  
4. a = (i: instance), }{.. iee È=¢ UU  
5. a = (i: stop), }{\.. iee UU =¢  
6. a = (i: cond y(J)), )),, cond:(.,(), cond:(., iJyieJJyieJ SSU Φ=¢Í  
where  

}{),,(
)},{\,(
}{),,(

iIiIJ
iiJJ

iiJ

È=Φ
=⊥Φ

=⊥Φ
 

and  a rule is applied if previous one is not applied. In all these rules only the components of 
environment state that change their value are shown. All other components of environment left 
unchanged. Now we define the rule (1) for empty MSC-environment so that in the cases 1-3 ac = , in 
cases 4-5 τ=c , and in the case 6, c = (J: condition y) if =⊥¢ ), cond:(. Jyie S  and τ=c  otherwise.  

Initial state of empty MSC environment is ),,(0 Æ⊥⊥=e  where the first two components are 
nowhere defined functions and the last component is the empty set of instances. For the process B on 
Fig.2 the representation of the process ][0 Be  is given on Fig.3.  
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][0 Be  = ( 
  ((b:instance). (c:instance)+(c:instance). (b:instance)); {b,c}:condition y);  
  (b:m to c). 1e  [ 
   (b:n to c). (b:cond z{b,c}).(b:stop) ||  
   (c:m from b). (c:n from b).(c:cond z{b,c}).(c:stop) 
  ] 
 ) = ( 
  ((b:instance). (c:instance)+(c:instance). (b:instance));  
  ({b,c}:condition y). (b:m to c).( 
   ((b:n to c). (c:m from b)+(c:m from b). (b:n to c)); 
   (c:n from b).({b,c}:condition z);  
  ((b:stop). (c:stop) +(c:stop).(b:stop)); 
   ][0 ∆e   
  ) 
 ) 
 

Fig. 3  
 
 
  To define insertion function for nonempty environment let us define some auxiliary notions. 

MSC-process is called belonging to instance i if all its actions belong to the instance i. MSC-process is 
called decomposable if it can be represented as a parallel composition of processes belonging to 
different instances. The set of all decomposable processes is transition closed (follows directly from the 
definition).  

The process proc(B) is equivalent to the instance oriented textual representation of MSCs and 
we can define the composition u*v of decomposable MSC-processes which in the case of MSCs is 
equivalent to their vertical product. This composition is defined by the following identities: 

)||||);(||...||);(()||||...||(*)||||...||( 1111 SQqpqpSqqQpp mmmm = , 
where mpp ,...,1  belong to the same instances as mqq ,...,1 , correspondingly, Q and S have no common 
instances. Note that joining two instances we can use the identity ((i: stop).(i: instance)) = Δ, because 
these two behaviors are insertion equivalent. 

For nonempty environment e[u] and decomposable processes u and v define ][],[ vuevue ∗= . 
This definition can be extended to arbitrary number of decomposable processes:  

]...[],...,[ 11 mm uueuue ∗∗= . 
To use this definition for arbitrary (not only decomposable) MSC-processes one must extend the notion 
of the composition of MSC-processes. 

Partially sequential composition of behaviors. Let us consider attributed behaviors of the 
algebra F(A,L). Let },|:{: AaLaAL ÎÎ= αα  be the set of attributed actions (unlabeled actions are 
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1:a, attribute labels are τα : ). First we define the permutability relation over the set L:A. This is an 
arbitrary symmetric and reflexive binary relation denoted as ba « . Intuitively this relation means that 

)*(~)*( abba E  for environment E where the agents from F(A,L) will be inserted into. We say that an 
attributed action a:α  is reachable from behavior u if there exists behavior v such that v:α  is 
reachable from u and vv a ¢¾®¾:α . Let us expand the permutability relation of attributed actions to 
attributed behaviors. We say that behaviors u and v are permutable ( vu « ) if 0 and ⊥  are not 
reachable from u and v, and for each attributed action a reachable from u and attributed action b 
reachable from v ba « . 

Now we can define the partially sequential composition vu ∗  of two behaviors. Let u and v are 
two attributed behaviors, represented in the canonical form:   

v
Ll

ll
Kk

kku
Jj

jj
Ii

ii vbvvuauu εβεα ++=++= åååå
ÎÎÎÎ

.:,.:  

Then 
);().()(:).()(:

,,
vu

Llbu
ll

Kku
kk

Jj
ij

Ii
ii

lk

vubvuvuavuvu εεβα
β

+∗+∗+∗+∗=∗ åååå
Î«Î«ÎÎ

 

A sequential composition of termination constants is defined with the following relations: 
0);0(  ,);(  ,);( ==⊥⊥=∆ εεεε . 

Note that partially sequential composition is not continuous with respect to the first argument; however 
it is continuous with respect to the second one. It is also continuous with respect to both arguments, if 
the first argument is finite and totally defined.  Let now u and v be completely unlabelled.  Then if all 
actions are permutable, then a partially sequential composition coincides with a parallel composition, 
and if no actions are permutable, then we obtain a sequential composition of behaviors.  The notion of 
partially sequential composition originates from the notion of weak sequential composition introduced 
by Renier for describing the semantics of MSC diagrams and is a generalization of the latter (for not 
delayed nondeterministic choice). 

Permutability for MSC-environment. The states of MSC have no attribute labels (the empty 
label is omitted). Two actions are permutable if they belong to different instances, or in the case of 
conditions (sharing a set of instances) have no common instances. Now we can define partially 
sequential composition of arbitrary (not necessarily decomposable) MSC-processes and define for them 
insertion function as above but changing vertical product to partially sequential composition that 
coincides with vertical product for decomposable processes. 

For MSCs B and C we have proc(B)*proc(C)=proc(B*C) where the product of MSCs is their 
vertical product.  If 0e  is the initial state of empty MSC-environment and B is an MSC diagram then 
[B] denotes the behavior of a system )]([0 Bproce . 

Interpreted MSC.  MSC environment regulates the correct ordering of MSC-actions in MSC-
processes. The actions of interpreted MSCs can also define the data transformation in higher level data 
environment D. Transitions dd a ¢¾®¾  in D for MSC action a define the corresponding transformation. 
The insertion function for data environment can be defined in the same way as for MSC environment 
using partially sequential composition, but with another notion of permutability. Below several kinds of 
data environments will be considered. For MSC diagram B we can construct MSC-process[B] and 
insert this process into data environment obtaining two level environment d[[B]]. As it was mentioned 
before d[[B],[C]]= d[[B]*[C]] = d[[B*C]].   
 
Basic protocol specifications 

Let us start with a very simple and well known example: readers and writers (R&W). The 
environment keeps shared record that can be sent to readers and updated by writers. Readers and  
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writers are two types of agents that can be inserted into this environment. Basic Protocol Specification 
(BPS) of a system consists of two parts: environment description and the set of basic protocols. 
Environment description has a text representation and basic protocols are MSC diagrams with pre- and 
postconditions. The description of R&W environment is presented in Fig.4. It shows that there are two  
environment attributes rec of symbolic type and queue, the list of symbolic type data. Each reader has 

two Boolean attributes registered and access allowed. The agents of a type writer have no attributes in 
the environment. Safety condition asserts that access (to the rec) is allowed only for registered readers. 
This is a dynamic requirement which must be satisfied in any environment state. The last assumption 
states that initially there are no registered readers (and therefore access is not allowed for all of them).  
Other sections of environment description will be discussed later. 

The set of basic protocols represents the set of local requirements to the system. Each protocol 
is a simple MSC with a special text block with parameters. Only two conditions are allowed in Basic 
Protocol. The first one is at the beginning of MSC. It is shared by all instances of the protocol and 
contains a precondition formula as a condition text. The second condition is at the end of a protocol, it 
is shared by all instances and contains a postcondition as a text. Text block contains a list of typed 
parameters used for instantiation of a protocol. 
 
 
 
 
 
 
 
 

environment( 
 agent types:( 
   reader: ( 
    registered: Bool, 
   access allowed: Bool 
   ), 
   writer: Nil  
  ); 
  attributes:( 
  rec: symb, 
  queue: list of symb 
 ); 
 safety condition: Forall(m:reader)( 
  m.access allowed->m.registered 
 ); 
 initial condition:( 
  Forall(m:reader)( 
   ~(reader m.registered)&  
   ~(reader m.access allowed) 
  ) 
 ) 
); 

Fig.4 
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reader m 

 

env m  

 

reader(m, register.s)& 

~(reader m.registered) 

 reader(m, s)& 

 reader m.registered 

register m 

ok 

register(m,s) 

reader m 

 

env m 

 

reader(m, read.s)& 

reader m.access allowed 

 reader(m, s)& 

~(reader m.access allowed) 

read m 

rec 

read(m,s) 

Fig. 5 
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reader m 

 

env m 

 

reader(m, release.s)& 

reader m.registered 

 reader(m, s)& 

 ~(reader m.registered) 

release m 

ok 

release(m,s) 

writer m 

 

env queue 

 

 writer(m, write x.s) 

writer(m, s)& 

add_to_tail(queue,(m:x)) 

write(m:x) 

ok 

write(m,s,x) 

Fig.6 



 12 

 
Basic protocols for R&W are represented in figures 5-7. Each diagram is accompanied by its 

name and a list of parameters. First three protocols describe the local behavior of the system inspired 
by reader activity. The protocol write(m,s,x) describes the activity of the writer, and the last protocol 
update(x,t) describes the transition of the environment (without agents participation). The first four 
protocols have an expression of a type ),( smτ  where τ is a type of agent and s is the state expression. 
It is a state assumption and means that the agent m of the type τ is in a state s. Agents are represented 
by their unique names (ids), states are represented by means of behavior (process) algebra expressions. 
Therefore the symbols register, read, and release are reader actions, and write is a writer action. The 
actions of environment are send and receive message events or local actions presented by MSC. Agent 
attributes are accessed by the expressions of the type xm . τ , where τ is the type of agent m and x is the 
name of attribute (type of agent can be omitted in some cases). The instances are named by expressions 
containing the names of agents or the name of environment env possibly attached by the list of 
attributes or the names of agents.  

In symbolic notation a basic protocol will be represented by expressions of the form  
)( βα >®<∀ ux  

where x is a list of parameters, α  and β  are precondition and postcondition, correspondingly, and u is 
an MSC process (usually inserted to MSC environment). 

env rec 

 update x 

update(x,t) 

Fig.7 

  

(queue=t)&(rec=x)& 

Forall(n:reader)(n.registered-> 

n.access allowed) 

(queue=(x,t))& 

Exist(n:reader)(n.registered)& 

Forall(n:reader)(n.registered-> 

~(n.access allowed)) 

env queue 




