
ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 1 — #1

6
System Validation

J.V. Kapitonova,
A.A. Letichevsky, and
V.A. Volkov
Glushkov Institute of Cybernetics,
National Academy of Science of
Ukraine

T. Weigert
Global Software Group, Motorola

6.1 Introduction. 6-1
6.2 Mathematical Models of Embedded Systems 6-2

Transition Systems • Agents • Environments • Classical
Theories of Concurrency

6.3 Requirements Capture and Validation 6-19
Approaches to Requirements Validation • Tools for
Requirements Validation

6.4 Specifying and Verifying Embedded Systems 6-29
System Descriptions and Initial Requirements • Static
Requirements • Dynamic Requirements • Example: Railroad
Crossing Problem • Requirement Specifications • Reasoning
about Embedded Systems • Consistency and Completeness

6.5 Examples and Results . 6-40
Example: Embedded Operating System
Experimental Results in Various Domains

6.6 Conclusions and Perspectives . 6-50
References . 6-50

6.1 Introduction

Toward the end of the 1960s system designers and software engineers faced what was then termed as
“software crisis.” This crisis was the direct outcome of the introduction of a new generation of computer
hardware. The new machines were substantially more powerful than the hardware available until then,
making large applications and software systems feasible. The strategies and skills employed in building
software for the new systems did not match the new capabilities provided by the enhanced hardware. The
results were delayed projects, sometimes for years, considerable cost overruns, and unreliable applica-
tions with poor performance. The need arose for new techniques and methodologies to implement large
software systems. The now classic “waterfall” software life-cycle model was then introduced to meet these
needs.

The 1960s have long gone by, but the software crisis still remains. In fact the situation has worsened —
the implementation disasters of the 1960s are being succeeded by design disasters. Software systems have
reached levels of complexity at which it is extremely difficult to arrive at complete, or even consistent,
specifications and it is nearly impossible to know all the implications of one’s requirement decisions.
Further, the availability of hardware and software components may change during the course of the
development of a system, forcing a change in the requirements. The customer may be unsure of the
requirements altogether. The situation is even worse for embedded systems: the real time and distributed
aspects of such systems impose additional design difficulties and introduces the possibility of concurrency

6-1

Олександр
Sticky Note
In R. Zurawski, editor. The Embedded Systems Handbook. CRC Press, Miami, 2005.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 2 — #2

6-2 Embedded Systems Handbook

pathologies such as deadlock or lifelock, resulting from unforeseen interactions of independently executing
system components. A number of new methodologies, such as rapid prototyping, executable specifications,
and transformational implementation have been introduced to address these problems in order to arrive at
shorter cycle time and increased quality of the developed systems. Although each of these methodologies
addresses different concerns they share the underlying assumption that verification and validation be
performed as close to the customer requirements as possible.

While verification tries to ensure that the system is built “right,” that is, without defects, validation
attempts to ensure that the “right” system is developed, that is, a system that matches what the customer
actually wants. The customer needs is captured in the system requirements. Many studies have demon-
strated that errors in system requirements are the most expensive as they are typically discovered late,
when one first interacts with the system; in the worst case such errors can force complete redevelopment
of the system.

In this chapter, we examine techniques aimed at discovering the unforeseen consequences of require-
ments as well as omissions in requirements. Requirements should be consistent and complete. Roughly
speaking, consistency means the existence of an implementation that meets the requirements; complete-
ness means that the implementation (its function or behavior) is defined uniquely by the requirements.
Validation of a system is to establish that the system requirements are consistent and complete.

Embedded systems [1–3] consist of several components that are designed to interact with one another
and with their environment. In contrast to functional systems, which are specified as functions from input
to output values, an embedded system is defined by its properties. A property is a set of desired behaviors
that the system should possess.

In Section 6.2, we present a mathematical model of embedded systems. Labeled transition systems,
representing the environment and agents inserted into this environment by means of a continuous inser-
tion function are used for representing system requirements at all levels of details. Section 6.3 presents a
survey of freely available systems that could be used to validate embedded systems as well as references
to commercially available systems. In Section 6.4, we present a notation to describe the requirements of
embedded systems. Two kinds of requirements are distinguished: static requirements define the properties
of system and environment states and the insertion function of the environment; dynamic requirements
define the properties of histories and behavior of system and environment. Hoare-style triples are used to
formulate static requirements; logical formulae with temporal constraints are used to formulate dynamic
requirements. To define transition systems with a complex structure of states we rely on attributed trans-
ition systems which allow to split the definition of a transition relation into a definition of transitions
on a set of attributes, and formulate general transition rules for the entire environment states. We also
present a tool for reasoning about the embedded systems and discuss more formally the consistency and
completeness condition for a set of requirements. Our approach does not require the developers to build
software prototypes, which are traditionally used for checking consistency of a system under development.
Instead, one develops formal specifications and uses proofs to determine consistency of the specification.
Finally, Section 6.5 presents the specification of a simple scheduler as a case study and reports the results
on applying these techniques to the systems in various application domains.

We have observed the following time distribution in the software development cycle: 40% of the cycle
time is spent on requirements capture, 20% on coding, and 40% on testing. Requirements capture,
includes not only the development of requirements but also their corrections and refinement during the
entire development cycle. According to Brooks [4], 15% of the development efforts are spent on validation,
that is, ensuring that the system requirements are correct. Therefore, improving validation has a significant
impact on development time, even for successful requirement specifications. For failed requirements that
forced major system redevelopment, the impact is obviously much higher.

6.2 Mathematical Models of Embedded Systems

In the embedded domain, the main properties of the systems concern the interaction of components with
each other and with the environment. The primary mathematical notion to formally represent interacting

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 3 — #3

System Validation 6-3

and communicating systems is that of a labeled transition system. When formulating requirements or
developing high-level specifications we are not interested in the internal structure of the states of a
system and consider these states, and therefore also the systems, as identical up to some equivalence. The
abstraction afforded by this equivalence leads to the general notion of an agent and its behavior. Agents
exist in some environment and an explicit definition of the interaction of agents and environments in
terms of a function that embeds the agent in this environment helps to specialize the mathematical models
to particular characteristics of the subject domain.

6.2.1 Transition Systems

The most general abstract model of software and hardware systems, which evolve in time and change
states in a discrete way, is that of a discrete dynamic system. It is defined as a set of states and a set of
histories, describing the evolution of a system in time (either discrete or continuous). As a special case,
a labeled transition system over the set of actions A is a set S of states together with the transition relation

T ⊆ S × A × S. If (s, a, s ′) ∈ T , we usually write this as s
a−→ s ′ and say that a system S moves from the

state s to state s ′ while performing the action a. (Sometimes the term “event” is used instead of “action.”)
An automaton is a more special case, where the set of actions is the set of input/output values. Continuity
of time, if necessary, can be introduced by supplying actions with a duration, that is, by considering
complex actions (a, t), where a is a discrete component of an action (its content) and t is a real number
representing the duration of a. In timed automata, duration is defined nondeterministically and intervals
for possible durations are used instead of specific moments in time.

Transition systems separate the observable part of a system, which is represented by actions, from
the hidden part, which is represented by states. Actions performed by a system are observable by an
external observer and other systems, which can communicate with the given system, synchronizing their
actions, and combining their behaviors. The internal states of a system are not observable; they are
hidden. Therefore, the representation of states can be ignored when considering the external behavior of
a system.

The activity of a system can be described by its history which is a sequence of transitions, beginning
from an initial state:

s0
a1−→ s1

a2−→ · · · sn
an1−→ sn+1 · · ·

A history can be finite or infinite. Each history has an observable part (a sequence of actions
a1, a2, . . . , an , . . .) and a hidden part (a sequence of states). The former is called a trace generated by
the initial state s0 (in Reference 5, the term behavior is used instead of trace). Two states are called to be
trace-equivalent if the set of all traces generated by these states coincide.

A final history cannot be continued: it is infinite or for the last state sn in the sequence, there are

no transitions sn
an−→ sn+1 from this state; such a state is called a final state. We distinguish a final state

representing successful termination from deadlock states (states where one part of a system is waiting for an
event caused by another part and the latter is waiting for an event caused by the former) and divergent or
undefined states. Such states can be defined later or constitute livelocks (states that contain hidden infinite
loops or infinite recursive unfolding without observable actions).

Transition systems can be nondeterministic in which a system can move from a given state s into
different states performing the same action a. A labeled transition system (without hidden transitions) is

deterministic if for arbitrary transitions s
a−→ s ′ and s

a−→ s ′′, it follows that s ′ = s ′′, and that there are no
states representing both successful termination and divergence.

To define transition systems with a complex structure of states we rely on attributed transition systems.
If e is a state of an environment and f is an attribute of this environment, then the value of this attribute
will be denoted as e · f . We will represent a state of an environment with attributes f1, . . . , fn as an
object with public (observable) attributes f1 : t1, . . . , fn : tn , where t1, . . . , tn are types, and some hidden
private part.

Letichevsky
Note
[115]

Letichevsky
Note
n+1

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 4 — #4

6-4 Embedded Systems Handbook

6.2.2 Agents

Agents are objects that can be recognized as separate from the “rest of the world,” that is, other agents or
the environment. They change their internal state and can interact with other agents and the environ-
ment, performing observable actions. The notion of an agent formalizes such diverse objects as software
components, programs, users, clients, servers, active components of distributed systems, and so on.

In mathematical terms, agents are labeled transition systems with states considered up to bisimilarity. We
are not interested in the structure of the internal states of an agent but only in its observable behavior. The
notion of an agent as a transition system considered up to some equivalence has been studied extensively
in concurrency theory; van Glabbeek [6] presents a survey of the different equivalence relations that have
been proposed to describe concurrent systems. These theories use an algebraic representation of agent
states and develop a corresponding algebra so that equivalent expressions define equivalent states. The
transition relation is defined on the set of algebraic expressions by means of rewriting rules and recursive
definitions.

Some representations avoid the notion of a state, and instead, if for some agent E a transition for action
a is defined, it is said that the agent performs the action a and thus becomes another agent E ′.

6.2.2.1 Behaviors

Agents with the same behavior (i.e., agents which cannot be distinguished by observing their interaction
with other agents and environments) are considered equivalent. We characterize the equivalence of agents
in terms of the complete continuous algebra of behaviors F(A). This algebra has two sorts of elements —
behaviors u ∈ F(A), represented as finite or infinite trees, and actions a ∈ A, and two operations —
prefixing and nondeterministic choice. If a is an action and u is a behavior, prefixing results in a new
behavior denoted as a ·u. Nondeterministic choice is an associative, commutative, and idempotent binary
operation over behaviors denoted as u + v , where u, v ∈ F(A). The neutral element of nondeterministic
choice is the deadlock element (impossible behavior) 0. The empty behavior � performs no actions and
denotes the successful termination of an agent. The generating relations for the algebra of behaviors are
as follows:

u + v = v + u

(u + v)+ w = u + (v + w)

u + u = u

u + 0 = u

∅ · u = 0

where ∅ is the impossible action.
Both operations are continuous functions on the set of all behaviors over A. The approximation relation

⊆ is a partial order with minimal element ⊥. Both prefixing and nondeterministic choice are monotonic
with respect to this approximation:

⊥ ⊆ u

u ⊆ v ⇒ u + w ⊆ v + w

u ⊆ v ⇒ a · u ⊆ a · v

The algebra F(A) is constructed so that prefixing and nondeterministic choice are also continuous with
respect to the approximation and it is closed relative to the limits (least upper bounds) of the directed sets of
finite behaviors. Thus, we can use the fixed point theorem to give a recursive definition of behaviors starting

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 5 — #5

System Validation 6-5

from the given behaviors. Finite elements are generated by three termination constants: � (successful
termination),⊥ (the minimal element of the approximation relation), and 0 (deadlock).

F(A) can be considered as a transition system with the transition relation defined by u
a−→ v if u can be

represented in the form u = a · v + u′. The terminal states are those that can be represented in the form
u + �, divergent states are that which can be represented in the form u + ⊥. In algebraic terms we can
say that u is terminal (divergent) iff u = u + � (u = u + ⊥), which follows from the idempotence of
nondeterministic choice. Thus, behaviors can be considered as states of a transition system. Let beh(s)
denote the behavior of an agent in a state s, then the behavior of an agent in state s can be represented as
the solution us ∈ F(A) of the system

us =
∑
s

a−→t

a · ut + εs (6.1)

where εs = 0 if s is neither terminal nor divergent, εs = � if s is terminal but not divergent, εs = ⊥ for
divergent but not terminal states, and εs = �+⊥ for states which are both terminal and divergent. If all
summands in the representation (6.1) are different, then this representation is unique up to associativity
and commutativity of nondeterministic choice.

As an example, consider the behavior u defined as u = tick .u. This behavior models a clock that
never terminates. It can be represented by a transition system with only one state u which generates the
infinite history

u
tick−−−→ u

tick−−−→ · · ·

The infinite tree with only one path representing this behavior can be obtained as the limit of the sequence
of finite approximations u(0) = ⊥, u(1) = tick .⊥, u(2) = tick .tick .⊥, Now consider,

u = tick .u + stop .�

This is a model of a clock which can terminate by performing the action stop, but the number of steps
to be done before terminating are not known in advance. The transition system representing this clock
has two states, one of which is a terminal state. The first two approximations of this behavior are

u(1) = tick .⊥+ stop .�

u(2) = tick .(tick .⊥+ stop .�)+ stop .�

Note that, the second approximation cannot be written in the form tick .tick .⊥+tick .⊥+stop .�
because distributivity of choice does not hold in behavior algebra.

u = tick .u + tick .0

describes a similar behavior but is terminated by deadlock rather than successfully.

6.2.2.2 Bisimilarity

Trace equivalence is too weak to capture the notion of the behavior of a transition system. Consider the
systems shown in Figure 6.1.

Both systems in Figure 6.1 start by performing the action a. But the system at the left-hand side has
a choice at the second step to perform either action b or c . The system on the right can only perform
an action b and can never perform c or it can only perform c and never perform b, depending on what
decision was made at the first step. The notion of bisimilarity [7] captures the difference between these
two systems.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 6 — #6

6-6 Embedded Systems Handbook

a

c

a

bb c

a

FIGURE 6.1 Two systems which are trace equivalent but have different behaviors.

A binary relation R ⊆ S× S on the set of states S of a transition system without terminal and divergent
states is called a bisimulation if for each s and t such that (s, t) ∈ R and for each a ∈ A:

1. If s
a−→ s ′ then there exists t ′ ∈ S such that t

a−→ t ′ and (s ′, t ′) ∈ R.
2. If t

a−→ t ′ then there exists s ′ ∈ S such that s
a−→ s ′ and (s ′, t ′) ∈ R.

Two states s and t are called bisimilar if there exists a bisimulation relation R such that (s, t) ∈ R.
Bisimilarity is an equivalence relation whose definition is easily extended to the case when R is defined as
a relation between the states of two different systems, considering the disjoint union of their sets of states.
Two transition systems are bisimilar if each state of one of them is bisimilar to some state of the other.

For systems with nontrivial sets of terminal states S� and divergent states S⊥, partial bisimulation is
considered instead of bisimulation. A binary relation R ⊆ S × S is a partial bisimulation if for all s and t
such that (s, t) ∈ R and for all a ∈ A,

1. If s ∈ S� then t ∈ S� and if s /∈ S⊥ then t /∈ S⊥.
2. If s

a−→ s ′ then there exists t ′ such that t
a−→ t ′ and (s ′, t ′) ∈ R.

3. If t
a−→ t ′ then there exists s ′ such that s

a−→ s ′ and (s ′, t ′) ∈ R.

A state s of a transition system S is called a bisimilar approximation of t , denoted by s ⊆B t , if there
exists a partial bisimulation R such that (s, t) ∈ R. Bisimilarity s ∼B t can then be introduced as the
relation s ⊆B t ∧ t ⊆B s. For attributed transition systems, the additional requirement is that if (s, t) ∈ R,
then s and t have the same attributes.

A divergent state without transition approximates arbitrary other states that are not terminal. If s
approximates t and s is convergent (not divergent) then t is also convergent, s and t have transitions for
the same sets of actions, and satisfy the same conditions as for bisimulation without divergence. Otherwise
if s is divergent, the set of actions, for which s has transitions, is only included in the set of actions for
which t has transitions, that is, s is less defined than t . For the states of a transition system it can be
proved that

s ⊆B t ⇔ beh(s) ⊆ beh(t)

s ∼B t ⇔ beh(s) = beh(t)

and, therefore, the states of an agent considered up to bisimilarity can be identified with corresponding
behaviors. If S is a set of states of an agent then a set U = {beh(s)|s ∈ S} is a set of all its behaviors.

This set is transition closed which means that u ∈ U and u
a−→ v implies v ∈ U . Therefore, U is also a

transition system equivalent to S and can be used as a standard behavior representation of an agent.

Letichevsky
Note
[114]

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 7 — #7

System Validation 6-7

For many applications, a weaker equivalence such as weak bisimilarity introduced by Milner [8], or
insertion equivalence as discussed in Section 6.2.3, have been considered. Note that, for deterministic
systems, if two systems are trace-equivalent, they are also bisimilar.

6.2.2.3 Composition of Behaviors

Composition of behaviors is defined as an operation over agents and is expected to preserve equivalence;
it can, therefore, also be defined as an operation on behaviors.

The sequential composition of behaviors u and v is a new behavior denoted as (u; v) and defined by
means of the following inference rules and equations:

u
a−→ u′

(u; v)
a−→ (u′; v ′)

(6.2)

((u +�); v) = (u; v)+ v (6.3)

((u +⊥); v) = (u; v)+⊥ (6.4)

(0; u) = 0 (6.5)

We consider a transition system with states built from arbitrary behaviors over the set of states A by
means of operations of the behavior algebra F(A) and a new operation denoted as (u; v). Expressions
are considered up to the equivalence defined by the above equations (thus, the extension of a behavior
algebra by this operation is conservative). The inference rule (6.2) defines a transition relation on a set of
equivalence classes.

From rule (6.2) and equation (6.4) it follows that (�; v) = v and (⊥; v) = ⊥. One can prove that
(u;�) = u and that sequential composition is associative and distributives to the left

((u + v); w) = (u; w)+ (v ; w)

Sequential composition can also be defined explicitly by the following recursive definition:

(u; v) =
∑

u
a−→u′

a · (u′; v)+
∑

u=u+ε
(ε; v)

6.2.2.3.1 Parallel Composition of Behaviors
We define an algebraic structure on the set of actions A by introducing the combinator a × b of actions
a and b. This operation is commutative and associative with the impossible action ∅ as the zero element
(a × ∅ = ∅). As ∅ · u = 0, there are no transitions labeled ∅. The inference rules and equations defining
the parallel composition u ‖ v of behaviors u and v are

u
a−→ u′, v

b−→ v ′, a × b �= ∅
u ‖ v

a×b−−→ u′ ‖ v ′

u
a−→ u′

u ‖ v
a−→ u′ ‖ v

u
a−→ u′

u ‖ (v +�) a−→ u′

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 8 — #8

6-8 Embedded Systems Handbook

v
a−→ v ′

u ‖ v
a−→ u ‖ v ′

v
a−→ v ′

(u +�) ‖ v
a−→ v ′

(u +�) ‖ (v +�) = (u +�) ‖ (v +�)+�
(u +⊥) ‖ v = (u +⊥) ‖ v +⊥
u ‖ (v +⊥) = u ‖ (v +⊥)+⊥

The following equations for termination constants are direct consequences of these definitions:

� ‖ ε = ε ‖� = ε ⊥‖ ε = ε ‖⊥ = ⊥
0 ‖ ε = ε ‖ 0 = 0 if ε �= ε +⊥

0 ‖ ε = ε ‖ 0 = ⊥ if ε = ε +⊥

Parallel composition is commutative and associative.
Parallel composition is the primary means for describing the interaction of agents. The simplest inter-

action is interleaving, which trivially defines composition as a × b = ∅ for arbitrary actions. Agents
in a parallel composition interact with each other and can synchronize via combined actions. Parallel
composition can also be defined explicitly by the following recursive definition:

(u ‖ v) =
∑

u
a−→u′

v
b−→v ′

(a × b) · (u′ ‖ v ′)+
∑

u
a−→u′

a · (u′ ‖ v)+
∑

v
b−→v ′

b · (u ‖ v ′)+ εu ‖ εv

where εu is a termination constant in the equational representation of behavior u.

6.2.3 Environments

An environment E is an agent over an action algebra C with an insertion function. All states of the
environment are initial states. The insertion function, denoted by e[u] takes an argument e (the behavior of
an environment) and the behavior of an agent over an action algebra A in a given state u (the action algebra
of agents may be a parameter of the environment) and yields a new behavior of the same environment.
The insertion function is continuous in both its arguments.

We consider agents up to a weaker equivalence than bisimilarity. Consider the example in Figure 6.2.
Clearly, these systems are not bisimilar. However, if a represents the transmition of a message, and b
represents the reception of that message, the second trace on the left-hand side figure would not be
possible within an environment that supports asynchronous message passing. Consequentially, both
systems would always behave the same. Insertion equivalence captures this difference: the environment
can impose constraints on the inserted agent, such as disallowing the behavior b · a, in this example. In
such environment, both behaviors shown in Figure 6.2 are considered equivalent.

Insertion equivalence depends on the environment and its insertion function. Two agents u and v are
insertion equivalent with respect to an environment E , written as u ∼E v , if for all e ∈ E , e[u] = e[v].
Each agent u defines a transformation on the set of environment states; two agents are equivalent with
respect to a given environment if they define the same transformation of the environment.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 9 — #9

System Validation 6-9

a

a

b

b

a

b

FIGURE 6.2 Two systems which are not bisimilar, but may be insertion equivalent.

External environment

Insertion function

Agent

E
nv

iro
nm

en
t

FIGURE 6.3 Agents in environment.

After insertion of an agent into an environment, the new environment is ready to accept new agents to
be inserted. Since insertion of several agents is a common operation, we shall use the notation

e[u1, . . . , un] = e[u1] · · · [un]

as a convenient shortcut for insertion of several agents.
In this expression, u1, . . . , un are agents inserted into the environment simultaneously, but the order of

insertion may be essential for some environments. If we wanted an agent u to be inserted after an agent v ,

we must find some transition e[u] a−→ s and consider the expression s[v]. Some environments can move

independently, suspending the actions of an agent inserted into it. In this case, if e[u] a−→ e ′[u], then
e ′[u, v] describes the simultaneous insertion of u and v into the environment in state e ′ as well as the
insertion of u when the environment is in a state e and is followed by the insertion of v .

An agent can be inserted into the environment e[u1, u2, . . . , un], or that environment can itself be
considered as an agent which can be inserted into a new external environment e ′ with a different insertion
function. An environment with inserted agents as a transition system is considered up to bisimilarity, but
after insertion into a higher level environment it is considered up to insertion equivalence (Figure 6.3).

Some example environments arising in real-life situations are:

• A vehicle with sensors is an environment for a computer system.
• A computer system is an environment for programs.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 10 — #10

6-10 Embedded Systems Handbook

• The operating system is an environment for application programs.
• A program is an environment for data, especially when considering interpreters or higher-order

functional programs.
• The web is an environment for applets.

6.2.3.1 Insertion Functions

Each environment is defined by its insertion function. The restriction on the insertion function to be
continuous is too weak and in practice more restricted types of insertion functions are considered. The
states of environments and agents can be represented in algebraic form as expressions of a behavior
algebra. To define an insertion function it is sufficient to define transitions on the set of expressions of
the type e[u]. We use rules in the form of rewriting logic to define these transitions. The typical forms of
such rules are:

F(x)[G(y)] → d · F ′(z)[G ′(z)]
F(x)[G(y)] → F ′(z)[G ′(z)]

where x = (x1, . . . , xn), y = (y1, . . . , yn), z = (x1, x2, . . . , y1, y2, . . .), x1, x2, . . . , y1, y2 are action or
behavior variables, F , G, F ′, G ′ are expressions in the behavior algebra, that is, expressions built by non-
deterministic choice and prefixing. More complex rules allow arbitrary expressions on the right-hand
side in the behavior algebra extended by insertion as two sorted operation. The first type of rule defines
observable transitions

F(x)[G(y)] d−→ F ′(z)[G ′(z)]
The second type of rule defines unlabeled transitions which can be used as auxiliary rules. They are not

observable outside the environment and can be reduced by the rule

e[u] ∗−→ e ′[u′], e ′[u′] d−→ e ′′[u′′]
e[u] d−→ e ′′[u′′]

where
∗−→means the transitive closure of unlabeled transitions. Special rules or equations must be added

for termination constants. Rewriting rules must be left linear with respect to the behavior variables, that is,
none of the behavior variables can occur more than once in the left-hand side. Additional completeness
conditions must be present to ensure all possible states of the environment are covered by the left-
hand side of the rules. Under these conditions, the insertion function will be continuous even if there
are infinitely many rules. This is because, to compute the function e[u] one needs to know only some
finite approximations of e and u. If e and u are defined by means of a system of fixed point equations,
these approximations can be easily constructed by unfolding these equations sufficiently many times.

Insertion functions that are defined by means of rewriting rules can be classified on the basis of the
height of terms F(x) and G(y) in the left-hand side of the rules. The simplest case is when this height
is no more than 1, that is, terms are the sum of variables and expressions of the form c · z , where c is
an action, and z is a variable. Such insertion functions are called one-step insertions, other important
classes are head insertion and look-ahead insertion functions. For head insertion the restriction on the
height should not exceed 1 which refers only to the agent behavior term G(y). The term F(x) can be
of arbitrary height. Head insertion can be reduced to one-step insertion by changing the structure of
the environment but preserving the insertion equivalence of agents. In head insertion, the interaction
between the environment and agent is similar to the interaction between the server and the client: a server
has information only about the next step in the behavior of the client but knows everything about its own
behavior. In a look-ahead insertion environment, the behavior of an agent can be analyzed for arbitrary
long (but finite) future steps. We can liken such environment to the interaction between an interpreter
and a program.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 11 — #11

System Validation 6-11

We consider a one-step insertion which is applied in many practical cases by restricting ourselves to
purely additive insertion functions that satisfy the following conditions:

(∑
ei

)
[u] =

∑
ei[u]

e
[∑

ui

]
=
∑

e[ui]

Given two functions D1 : A × C → 2C and D2 : C → 2C , the transition rules for insertion functions are

u
a−→ u′, e

c−→ e ′, d ∈ D1(a, c)

e[u] d−→ e ′[u′]
e

c−→ e ′, d ∈ D2(c)

e[u] d−→ e ′[u]

We refer to D1 and D2 as residual functions. The first rule (interaction rule) defines the interaction between
the agent and the environment which consists of choosing a matching pair of actions a ∈ A and c ∈ C .
Note that, the environment and the agent move independently. If the choice of action is made first by
the environment, then the choice of action c by the environment defines a set of actions that the agent
may take: a can be chosen only so that D1(a, c) �= ∅. The observable action d must be selected from the
set D1(a, c). This selection can be restricted by the external environment if e[u] considered as an agent
is inserted into the environment by other agents inserted into environment e[u] after u. This rule can be
combined with rules for unobservable transitions if some action, say τ (as in Milner CCS), is selected in C
to hide the transition. For this case we formulate the interaction rule to account for hidden interactions.

u
a−→ u′, e

c−→ e ′, τ ∈ D1(a, c)

e[u] −→ e ′[u′]

The second rule (environment move rule) describes the case when the environment transitions inde-
pendently of the inserted agent and the agent is waiting until the environment will allow it to move.
Unobservable transitions can also be combined with environment moves. Some equations should be
added for the case when e or u are termination constants. We shall assume that ⊥[u] = ⊥, 0[u] = 0,
e[�] = e, e[⊥] = ⊥, and e[0] = 0. There are no specific assumptions about �[u] but usually neither
� nor 0 belong to E . Note that, in the case when � ∈ E and �[u] = u, insertion equivalence coincides
with bisimulation. The definition of the insertion function for one-step insertion discussed earlier will be
complete, if we assume that there are no transitions other than those defined by the rules.

The definition above can be expressed in the form of rewriting rules as follows:

d ∈ D1(a, c) ⇒ (c · x)[a · y] → d · y

d ∈ D2(c) ⇒ (c · x)[y] → d · x[y]

and in the form of explicit recursive definition as

e[u] =
∑

e
c−→e ′

u
a−→u′

d∈D1(a,c)

d · e ′[u′] +
∑

e
c−→e ′

d∈D2(c)

d · e ′[u] + εe [u]

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 12 — #12

6-12 Embedded Systems Handbook

To compute transitions for the multiagent environment e[u1, u2, . . . , un] we recursively compute
transitions for e[u1], then for e[u1, u2] = (e[u1])[u2], and eventually for e[u1, u2, . . . , un] =
(e[u1, u2, . . . , un−1])[un].

Important special cases of one-step insertion functions are parallel and sequential insertion. An
insertion function is called a parallel insertion if

e[u, v] = e[u ‖ v]

This means that the subsequent insertion of two agents can be replaced by the insertion of their parallel
composition. The simplest example of a parallel insertion is defined as e[u] = e ‖ u. This special case
holds when the sets of actions of environment and agents are the same (A = C), b = D1(a, a × b), and
D2(a) = A. In the case when � ∈ E , this environment is a set of all other agents interacting with a given
agent in parallel, and insertion equivalence coincides with bisimilarity. Sequential insertion is introduced
in a similar way:

e[u, v] = e[u; v]

This situation holds, for example, when D1(a, c) = ∅, D2(c) = C , and�[u] = u.

6.2.3.2 Example: Agents Over a Shared and Distributed Store

As an example, consider a store, which generalizes the notions of memory, data bases, and other inform-
ation environments used by programs and agents to hold data. An abstract store environment E is an
environment over an action algebra C , which contains a set of actions A used by agents inserted into this
environment. We shall distinguish between local and shared store environments. The former can interact
with an agent inserted into it while this agent is not in a final state and, if another agent is inserted into this
environment, the activity of the latter is suspended until the former completes its work. The shared store
admits interleaving of the activity of agents inserted into it, and they can interact concurrently through
this shared store.

6.2.3.2.1 Local and Shared Store
The residual functions for a local store are defined as:

D1(a, c) = {d|c = a × d}, where d �= ∅ for d ∈ C\A or d = δ otherwise, and D2(c) = C

and for a shared store as

D1(a, c) = {d|c = a × d}, where d �= ∅, d ∈ C , and D2(c) = C .

It can be proved that the one-step insertion function for a local store is a sequential insertion and that
one-step insertion for a shared store is a parallel insertion. In other words,

e[u1, u2, . . .] = e[u1; u2; . . .]

for a local store, and

e[u1, u2, . . .] = e[u1 ‖ u2 ‖ . . .]

for a shared store. The interaction move for the local store is defined as

u
a−→ u′, e

a×d−−→ e ′

e[u] d−→ e ′[u′]

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 13 — #13

System Validation 6-13

When the store moves according to this rule, an agent inserted into it plays the role of control for this
store. A store in a state e[u] can only perform actions which are allowed by the agent u. This action can be
combined only with an action d which is not from the action set A and cannot be used by another agent
in a transition. The actions returned by the residual function are external actions and can be observed and
used only from outside the store environment.

Different from a local store, in a shared store environment several agents can perform their actions in
parallel according to the rule

u1
a1−→ u′1, . . . , un

an−→ u′n , e
a1×···×an×d−−−−−−−→ e ′

e[u1 ‖ · · · ‖ un ‖ v] d−→ e ′[u′1 ‖ · · · ‖ u′n ‖ v]

An important special case of the store environment E is a memory over a set of names R and a data
domain D. The memory can be represented by an attributed transition system with attributes R and states
e : R → R′. Agent actions are assignments and conditions, and their combinations are possible if they can

be performed simultaneously. If a is a set of assignments, then in a transition e
a−→ e ′ the state e ′ results

from applying a to e. The conjunction of conditions c enables a transition e
c×a−−→ e ′ if c is valid on e and

e
a−→ e ′.

6.2.3.2.2 Multilevel Store
For a shared memory store the residual action d in the transition

e[u1 ‖ · · · ‖ un ‖ v] d−→ e ′[u′1 ‖ · · · ‖ u′n ‖ v]

is intended to be used by external agents inserted later, but in a multilevel store it is convenient to restrict
the interaction with the environment to a given set of agents which have already been inserted. For this
purpose, a shared memory can be inserted into a higher level closure environment with an insertion
function defined by the equation

g [e[u]][v] = g [e[u ‖ v]]
where g is a state of this environment, e is a shared memory environment, and only the following two
rules are used for transitions in the closure environment:

e[u] c−→ e ′[u′], c ∈ Cext ∧ c �= δ
g [e[u]] ϕext(c ,e)−−−−→ g [e ′[u′]]

e[u] δ−→ e ′[u′]
g [e[u]] → g [e ′[u′]]

Here Cext is a distinguished set of external actions. Some of external actions can contain occurrences
of names from e. The function ϕext substitutes the values of these names in c and performs other
transformations to make an action be observable for external environment.

Two level insertions can be described in the following way. Let R = R1 ∪ R2 be divided into two
nonintersecting parts: the external and internal memory. Let A1 be the set of actions which change only
the values of R1, but can use the values of R2 (external output actions), let A2 be the set of actions which
change only the values of R2, but can use the values of R1 (external input actions), and A3 be the set
of actions which change and use only the values of R2 (internal actions). These sets are assumed to be
defined on the syntactical level. Redefine the residual function D1 and transitions of E : let a ∈ A and split
a into a combination of actions ϕ1(a)× ϕ2(a)× ϕ3(a) so that ϕ1(a) ∈ A1, ϕ2(a) ∈ A2, and ϕ3(a) ∈ A3

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 14 — #14

6-14 Embedded Systems Handbook

(some of these actions may be equal to δ). Define the interaction rule in the following way:

u
a−→ u′, e

(ϕ2(a)σ)×ϕ3(a)−−−−−−−−−→ e ′

e[u] cσ×ϕ1(a)−−−−−→ e ′[u′]
whereσ is an arbitrary substitution of names used in conditions and in the right-hand sides of assignments
of ϕ2(a) into the set of their values, bσ is an application of the substitution σ to b, cσ is a substitution
written in the form of the condition r1 = σ(r1) ∧ r2 = σ(r2) ∧ · · · . Define ϕext(b, e) = be, that is
a substitution of the values of R2 to b.

Consider a two level structure of a store state

t [g [e1[u1]] ‖ g [e1[u1]] ‖ · · ·]

where t ∈ DR1 is a shared store and e1, e2, . . . ∈ DR2 represent the distributed store (memory). When the
component g [ei[ui]] performs internal actions these are hidden and do not affect the shared memory. Per-
forming external output actions change the names of the shared memory and external input actions receive
values from the shared memory to change components of the distributed memory. This construction is
easily iterated as the components of a distributed memory can have multilevel structure.

6.2.3.2.3 Message Passing
Distributed components can interact via shared memory. We now introduce direct interaction via message
passing. Synchronous communication can be organized by extending the set of actions with a combination
of actions in parallel composition independently of the insertion function. To describe synchronous data
exchange in the most general abstract schema, let

u =
∑
d∈D

a(d) · F(d) u′ =
∑
d ′∈D

a′(d ′) · F ′(d ′)

be two agents which use data domain D for the exchange of information. Functions a and a′ map the data
domain onto the action algebra, functions F and F ′ map elements of the data domain onto behaviors.
The parallel composition of u and u′ is

u ‖ u′ =
∑

a(d)×a′(d ′)�=∅
a(d)× a′(d ′)(F(d) ‖ F ′(d ′))+

∑
d∈D

a(d)(F(d) ‖ u′)+
∑
d ′∈D

a′(d ′)(F ′(d ′) ‖ u)

(note that, εu = εu′ = 0, i.e., this is a special case of parallel composition where there are no termination
constants). The first summand corresponds to the interaction of two agents. The other two summands
reflect the possibility of interleaving. The interaction can be deterministic even if u and u′ are non-
deterministic if a(d) × a′(d ′) �= ∅ has only one solution. Interleaving makes it possible to select other
action if u ‖ u′ is embedded into another parallel composition. They can also be hidden by a closure
environment (similar to restriction in Calculus of Concurrent Systems, CCS).

The exchange of information through combination is bidirectional. An important special case
of information exchange is the use of send/receive pairs. For example, consider the following
combination rule

send(addr , d)×receive (addr ′, d ′)=
{
exch(addr), if addr=addr′, d=d ′
∅, otherwise

In the latter case, if

u = send(addr , d) · v

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 15 — #15

System Validation 6-15

and

u′ =
∑
d ′∈D

receive (addr , d ′) · F(d ′)

the interaction summand of the parallel composition will be exch(addr) · (v ‖ F(d)).
Asynchronous message passing via channels can be described by introducing a special communication

environment. The attributes of this environment are channels and their values are sequences (queues)
of stored messages. It is organized similarly to the memory environment but queue operations are used
instead of storing. In addition, send and receive actions are separated in time. This environment is a
special case of a store environment and can be combined with a store environment keeping separate the
different types of attributes and actions.

6.2.4 Classical Theories of Concurrency

The theory of interaction of agents and environments [9–11] focuses on the description of multi-agent
systems comprised of agents cooperatively working within a distributed information environment.

Other mathematical models for specifications of dynamic and real time systems interacting with envir-
onments have been developed based on process algebras (CSP, CCS, ACP, etc.), automata models (timed
Büchi and Muller automata, abstract state machines [ASM]), and temporal logic (LPTL, LTL, CTL, CTL∗).
New models are being developed to support different peculiarities of application areas, such as Milner’s
π-calculus [12] for mobility and its recent extension to object-oriented descriptions.

The environment may change the predefined behavior of an agent. For example, it may contain
some other agents designed independently and intended to interact and communicate with the agent
during its execution. The classical theories of communication consider this interaction as part of the
parallel composition of agents. The influence of the environment can be expressed as an explicit language
operation such as restriction (CCS) or hiding (CSP).

In contrast to the classical theories of interaction which are based on an implicit and hence not
formalized notion of an environment, the theory of interaction of agents and environments studies them
as objects of different types. In our approach the environment is considered as a semantic notion and is
not explicitly included in the agent. Instead, the meaning of an agent is defined as a transformation of an
environment which corresponds to inserting the agent into its environment. When the agent is inserted
into the environment, the environment changes and this change is considered to be a property of the agent
described.

6.2.4.1 Process Algebras

An algebraic theory of concurrency and communication that deals with the occurrence of events rather
than with updates of stored values is called a process algebra. The main variants of process algebra are
generally known by their acronyms: CCS [8] — Calculus of Concurrent Systems developed by Milner,
CSP [13] — Hoare’s Communicating Sequential Processes, and ACP — Algebra of Communicating
Processes of Bergstra and Klop [14]. These theories are based on transition systems and bisimulation,
and consider interaction of composed agents. They employ nondeterministic choice as well as parallel
and sequential compositions as primitive constructs. The influence of the environment on the system
may be expressed as an explicit language operation, such as restriction in CCS or hiding in CSP. These
theories consider communicating agents as objects of the same type (this type may be parameterized by
the alphabets for events or actions) and define operations on these types.

The CCS model specifies sets of states of systems (processes) and transitions between these states.
The states of a process are terms and the transitions are defined by the operational semantics of the
computation, which indicates how and under which conditions a term transforms itself into another
term. Processes are represented by the synchronization tree (or process graph). Two processes are identified
through bisimulation.

Letichevsky
Note
10-11,106-107,135-136

Letichevsky
Note
delete

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 16 — #16

6-16 Embedded Systems Handbook

CCS introduces a special action τ , called the silent action, which represents an internal and invisible
transition within a process. Other actions are split into two classes: output actions, which are indicated by
an overbar, and input actions, which are not decorated. Synchronization only takes place between a single
input and a single output, and the result is always the silent action τ . Thus, a × ã = τ , for all actions a.
Consequentially, communication serves only as synchronization; its result is not visible.

The π-calculus [12] is an enhancement of CCS and models concurrent computation by processes
that exchange messages over named channels. A distributed interpretation of the π-calculus provides for
synchronous message passing and nondeterministic choice. The π-calculus focuses on the specification
of the behavior of mobile concurrent processes, where “mobility” refers to variable communication via
named channels, which are the main entities in the π-calculus. Synchronization takes place only between
two channel agents when they are available for interchange (a named output channel is indicated by an
overbar, while an input channel with the same name is not decorated). The influence of the environment
in theπ-calculus is expressed as an explicit operation of the language (hiding). As a result of this operation,
a channel is declared inaccessible to the environment.

CSP explicitly differentiates the set of atomic actions that are allowed in each of the parallel processes.
The parallel combinator is indexed by these sets: when (P{A} ‖Q{B}), P engages only in events from the set
A, and Q only in events from the set B. Each event in the intersection of A and B requires a synchronous
participation of both processes, whereas other events only require participation of the relevant single
process. As a result, a × ã = a, for all actions a. The associative and commutative binary operator ×
describes how the output data supplied by two processes is combined before transmission to their common
environment.

In CSP, a process is considered to run in an environment which can veto the performance of certain
atomic actions. If, at some moment during the execution, no action, in which the process is prepared to
engage in, is allowed by the environment, then a deadlock occurs, which is considered to be observable.
Since in CSP a process is fully determined by the observations obtainable from all possible finite interac-
tions, a process is represented by its failure set. To define the meaning of a CSP program, we determine
the set of states corresponding to normal termination of the program, and the set of states corresponding
to its failures. Thus, the CSP semantics is presented in model-theoretic terms: two CSP processes are
identified if they have the same failure set (failure equivalence).

The main operations of ACP are prefixing and nondeterministic choice. This algebra allows an event
to occur with the participation of only a subset of the concurrently active processes perhaps omitting
any that are not ready. As a result, the parallel composition of processes is a mixture of synchronization
and interleaving, where each of the processes either occurs independently or is combined by × with a
corresponding event of another process. The merge operator is defined as

Merge(a, b) = (a × b)+ (a; b)+ (b; a).

ACP defines its semantics algebraically; processes are identified through bisimulation.
Most differences between CCS, ACP, and CSP can be attributed to differences in the chosen style of

presentation of the semantics: the CSP theory provides a model, illustrated with algebraic laws. CCS is
a calculus, but the rules and axioms in this calculus are presented as laws, valid in a given model. ACP is a
calculus that forms the core of a family of axiomatic systems, each describing some features of concurrency.

6.2.4.2 Temporal Logic

Temporal logic is a formal specification language for the description of various properties of systems.
A temporal logic is a logic augmented with temporal modalities to allow a specification of the order of
events in time, without introducing time explicitly as a concept. Whereas traditional logics can specify
properties relating to the initial and final states of terminating systems, a temporal logic is better suited to
describe the on-going behavior of nonterminating and interacting (reactive) systems.

As an example, Lamport’s TLA (Temporal Logic of Actions) [5,15] is based on Pnueli’s temporal logic
[16] with assignment and an enriched signature. It supports syntactic elements taken from programming

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 17 — #17

System Validation 6-17

languages to ease maintenance of large-sized specifications. TLA uses formulae on behavior, which are
considered as a sequence of states. States in TLA are assignments of values to variables. A system satisfies
a formula iff that formula is true in all behaviors of this system. Formulae where the arguments are only
the old and the new states are called actions.

Here, we distinguish between linear and branching temporal logics. In a linear temporal logic, each
moment of time has a unique possible future, while in branching temporal logic, each moment of time
may have several possible futures. On one hand, linear temporal logic formulae are interpreted over linear
sequences of points in time and specify the behavior of a single computation of a system. Formulae of
a branching temporal logic, on the other hand, are interpreted over tree-like structures, each describing
the behavior of possible computations of a nondeterministic system.

Many temporal logics are decidable and corresponding decision procedures exist for linear and branch-
ing time logics [17], propositional modal logic [18], and some variants of CTL∗ [19]. These decision
procedures proceed by building a canonical model for a set of temporal formulae representing properties
of the system to be verified by using techniques from automata theory, semantic tableaux, or binary
decision diagrams [20]. Determining whether such properties hold for a system amounts to establishing
that the corresponding formulae are true in a model of the system. Model checking based on these decision
procedures has been successfully applied to find subtle errors in industrial-size specifications of sequential
circuits, communication protocols, and digital controllers [21].

Typically, a system to be verified is modeled as a (finite) state transition graph, and their properties are
formulated in an appropriate propositional temporal logic. An efficient search procedure is then used to
determine whether the state transition graph satisfies the temporal formulae or not. This technique was
first developed in the 1980s by Clarke and Emerson [22] and by Quielle and Sifakis [23] and extended
later by Burch et al. [21].

Examples of temporal properties (properties of the interaction between processes in a reactive system)
are as diverse as their applications (this classification was introduced in References 2 and 24):

• Safety properties state that“something bad never happens” (a program never enters an unacceptable
state).

• Liveness properties state that “something good will eventually happen” (a program eventually enters
a desirable state).

• Guarantees specify that an event will eventually happen but does not promise repetitions.
• Obligations are disjunctions of safety and guarantee formulae.
• Responses specify that an event will happen infinitely many times.
• Persistence specifies the eventual stabilization of a system condition after an arbitrary delay.
• Reactivity is the maximal class formed from the disjunction of response and persistence properties.
• Unconditional Fairness states that a property p holds infinitely often.
• Weak Fairness states that if a property p is continuously true then the property q must be true

infinitely often.
• Strong Fairness states that if a property p is true infinitely often then the property q must be true

infinitely often.

6.2.4.3 Timed Automata

Timed automata accept timed words — infinite sequences in which a real-valued time of occurrence is
associated with each symbol. A timed automaton is a finite automaton with a finite set of real-valued
clocks. The clocks can be reset to 0 (independent of each other) with the transitions of the automaton and
keep track of the time elapsed since the last reset. Transitions of the automaton put certain constraints
on the clock value such that a transition may be taken only if the current values of the clocks satisfy the
associated constraints.

Timed automata can capture qualitative features of real time systems such as liveness, fairness, and
nondeterminism, as well as its quantitative features such as periodicity, bound response, and timing
delays.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 18 — #18

6-18 Embedded Systems Handbook

Timed automata are a generalization of finiteω-automata (either Büchi automata and Muller automata
[25,26]). When Büchi automata are used for modeling finite-state concurrent processes, the verification
problem is reduced to that of language inclusion [27,28]. While the inclusion problem for ω-regular
languages is decidable [26], for timed automata the inclusion problem is undecidable, which constitutes a
serious obstacle in using timed automata as a specification language for validation of finite-state real time
systems [29].

6.2.4.4 Abstract State Machine

Gurevich’s ASM project [30,31] attempts to apply formal models of computation to practical specification
methods.

ASM assumes the “Implicit Turing Thesis” according to which every algorithm can be modeled at its
appropriate abstraction level (its algorithm) by a corresponding ASM. ASM descriptions are based on the
concept of evolving algebras, which are transition systems on static algebras. Each static algebra represents
a state of the modeled system and transition rules are transitions in the modeled system. To simplify the
semantics and ease proofs, transitions are limited: they can change only functions, but not sorts, and
cannot directly change the universe.

A single agent ASM is defined over a vocabulary (a set of functions, predicates, and domains). Its
states are defined by assigning an interpretation to the elements of the vocabulary. An ASM program
describes the rules of transitioning between states. An ASM program is defined by basic transition rules,
such as updates (changes to the interpretation of the vocabulary), conditions (apply only if some specific
condition holds), or choice (extracts from a state elements with given properties), or by combinations of
transition rules into complex rules.

Multiagent ASM consist of a number of agents that execute their ASM program concurrently and
interact through globally shared locations of a state. Concurrency between agents is modeled by partially
ordered runs. The program steps executed by each agent are linearly ordered; in addition, program steps in
different programs are ordered if they represent causality relations. Multiagent ASM rely on a continuous
global system time to model time-related aspects.

6.2.4.5 Rewriting Logic

Rewriting logic [32] allows to prove assertions about concurrent systems with states changing under
transitions. Rewriting logic extends equational logic and constitutes a logical framework in which many
logics and semantic formalisms can be represented naturally (i.e., without distorting encoding). Similar to
algebras allowing a semantic interpretation to equational logic, models of rewriting logic are concurrent
systems. Moreover, models of concurrent computation, object-oriented design languages, architectural
description languages, and languages for distributed components also have natural semantics in rewriting
logic [33].

In rewriting logic, system states are in a bijective correspondence with formulae (modulo whatever struc-
tural axioms are satisfied by such formulae, e.g., modulo associativity or commutativity of connectives)
and concurrent computations in a system are in a bijective correspondence with proofs (modulo appro-
priate notions of equivalence). Given this equivalence between computation and logic, a rewriting logic
axiom of the form

t → t ′

has two readings. Computationally, it means that a fragment of a system state that is an instance of
the pattern t can change to the corresponding instance of t ′ concurrently with any other state changes. The
computational meaning is that of a local concurrent transition. Logically, it just means that we can derive
the formula t from the formula t ′, that is, the logical reading is that of an inference rule. Computation
consists of rewriting to a normal form, that is, an expression that can no further be rewritten; when the
normal form is unique, it is taken as the value of the initial expression. When rewriting equal terms always
leads to the same normal form, the set of rules is said to be confluent and rewriting can be used to check
for equality.

Letichevsky
Note
26 (25 is not relevant)

Letichevsky
Note
?

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 19 — #19

System Validation 6-19

Rewriting logic is reflective [34,35], and thus, important aspects of its meta-theory can be represented at
the object level in a consistent way. The language Maude [36,37] has been developed at SRI to implement a
framework for rewriting logic. The language design and implementation of Maude systematically leverage
the reflexivity of rewriting logic and make the meta-theory of rewriting logic accessible to the user allowing
to create within the logic a formal environment for the logic with tools for formal analysis, transformation,
and theorem proving.

6.3 Requirements Capture and Validation

In Reference 38, requirements capture is defined as an engineering process for determining what artifacts
are to be produced as the result of the development effort. The process involves the following steps:

• Requirements identification
• Requirements analysis
• Requirements representation
• Requirements communication
• Development of acceptance criteria and procedures

Requirements can be considered as an agreement between the customer and the developer. As agree-
ments, they must be understandable to the customer as well as to the developer and the level of
formalization depends on the common understanding and the previous experience of those involved
in the process of requirements identification.

The main properties of the system to be developed including its purpose, functionality, conditions of
use, efficiency, safety, liveness, or fairness properties, are specified in the requirements along with the
main goals of the development project. The requirements also include an explanation of terms referenced,
information about other already developed systems which should be reused in the development process,
and possible decisions on implementation and structuring of the system.

It is well recognized that identifying and correcting problems in requirements and early design phase
avoids far more expensive repairs later. Boehm quotes late life-cycle fixes to be a hundred times more
expensive than corrections made during the early phases of system development [39]. In Reference 40,
Boehm documents that the relative cost of repairing errors increases exponentially with the life-cycle
phase at which the error was detected. Kelly et al. [41] documents a significantly higher density of defects
found during the requirements phase as compared with later life-cycle phases. Early life-cycle defects
are also very prevalent: in Reference 42, it was shown that of 197 critical faults found during integration
testing of spacecraft software, only 3 were programming mistakes. The other 194 were introduced at earlier
stages. Fifty percent of these faults were owing to flawed requirements (mainly omissions) for individual
components, 25% were owing to flawed designs for these components, and the remaining 25% were owing
to flawed interfaces between components and incorrect interactions between them. A number of other
studies [43,44] reveal that most errors in software systems originate in the requirements and functional
specifications. If the errors were detected as soon as possible, their repair would have been least expensive.

A requirements specification must describe the external behavior of a system in terms of observable
events and actions. The latter describes interaction of system components with their environments includ-
ing other components and acceptable parts of the external physical world, that is, those aspects of the
world which can influence the behavior of the system.

We consider requirements to be correct if they are consistent and complete. Checking consistency and
completeness of requirements is the final task of requirements representation.

The informal understanding of the consistency of requirements is the existence of an implementation
which satisfies the requirements. In other words, if requirements are inconsistent, then an implementation
free of errors (bugs) that satisfies all the requirements cannot be created.

Unfortunately, most ways for describing requirements and preliminary designs (natural language,
diagrams, pseudocode) do not offer mechanized means of establishing correctness, so the primary means

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 20 — #20

6-20 Embedded Systems Handbook

to deduce their properties and consequences is through inspections and reviews. To be amenable to
analysis, the requirements must first be formalized, that is, rewritten in some formal language. We call this
formalized description a requirements specification. It should be free of implementation details and can be
used for the development of an executable model of a system, which is called an executable specification.
Note that, any description that is formal enough to be amenable to operational interpretation will also
provide some method of implementation, albeit usually a rather inefficient one.

The existence of an executable specification which satisfies the formalized requirements is a sufficient
condition of consistency. It is sufficient, because a final implementation that is free of errors can be
extracted from executable specifications using formal methods such as stepwise refinement.

Completeness of requirements is understood as the uniqueness of the executable specification con-
sidered up to some equivalence. The intuitive understanding of equivalence is as follows: two executable
specifications are equivalent if they demonstrate the same behaviors in the same environments. Com-
pleteness can also be expressed in terms of determinism of the executable specification (requirements are
sufficient for constructing a unique deterministic model). In some cases, incompleteness of requirements
is not harmful because it can be motivated by the necessity to suspend implementation decisions until
later stages of development.

The correspondence between the original requirements and the requirements specification is not formal.
Experience has shown that special skills are required to check correspondence between informal and formal
requirements. Incompleteness and inconsistencies discovered at this stage are used for improvement and
correction of the requirements which are used to correct the requirements specification.

6.3.1 Approaches to Requirements Validation

Standard approach to requirements analysis and validation typically involve manual processes such as
“walk-throughs” or Fagan-style inspections [45,46]. The term walk-through refers to a range of activities
that can vary from cursory peer reviews to formal inspections, although walk-throughs usually do not
involve the replicable processes and methodical data collection that characterize Fagan-style inspections.
Fagan’s highly structured inspection process was originally developed for hardware logic and later applied
to software design and code and eventually extended to all life-cycle phases, including requirements
development and high level design [45].

A Fagan inspection involves a review team with the following roles: a Moderator, an Author, a Reader,
and a Tester. The Reader presents the design or code to the other team members, systematically walking
through every piece of logic and every branch at least once. The Author represents the viewpoint of the
designer or coder, and the test perspective is represented by the Tester. The Moderator is trained to facilitate
intensive but constructive discussion. When the functionality of the system is well understood, the focus
shifts to a search for faults, possibly using a checklist of likely errors to guide the process. The inspection
process includes highly structured rework. One of the main advantages of Fagan-style inspections over
other conventional forms of verification and validation is that inspections can be applied early in the life
cycle. Thus potential anomalies can be detected before they become entrenched in low level design and
implementation.

Rushby [47] gives an overview of techniques of mechanized formal methods: decision procedures
for specialized, but ubiquitous, theories such as arithmetic, equality, and the propositional calculus are
helpful in discovering false theorems (especially if they can be extended to provide counter examples)
as well as in proving true ones, and their automation dramatically improves the efficiency of proof.
Rewriting is essential to efficient mechanization of formal methods. Unrestricted rewriting provides a
decision procedure for theories axiomatized by terminating and confluent sets of rewrite rules, but few
such theories arise in practice.

Integration of various techniques increases the efficiency of these methods. For example, theorem
proving attempts to show that a formula follows from given premises, while model checking attempts to
show that a given system description is a model for the formula. An advantage of model checking is that,
for certain finite-state systems and temporal logic formulae, it can be automated and is more efficient than

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 21 — #21

System Validation 6-21

theorem proving. Benefits of an integrated system (providing both theorem proving and model checking)
are that model checking can be used to discharge some cases in a larger proof and theorem proving can
be used to justify reduction to a finite state that is required for automated model checking. Integration of
these techniques can provide a further benefit: before undertaking a potentially difficult and costly proof,
we may be able to use model checking to examine special cases. Any errors that can be discovered and
eliminated in this way will save time and effort during theorem proving.

Model checking determines whether a given formula stating a property of the specification is satisfied
in a Kripke-model (in the specification represented as a Kripke-model). In the worst case, these algorithms
must traverse the whole of the model, that is, visit all states of the corresponding transition system, and
consequentially, model checking can be applied mainly for finite-state systems even in the presence of
sophisticated means of representing the set of states, such as binary decision diagram (BDD) methods
[20], while the proof of theorems about infinite state systems can be done only by means of deductive
methods.

6.3.2 Tools for Requirements Validation

Formal methods may be classified according to their primary purpose as descriptive or analytic. Descriptive
methods focus largely on specifications as a medium for review and discussion, whereas analytic methods
focus on the utility of specification as a mathematical model for analyzing and predicting the behavior of
systems. Not surprisingly, the different emphasis is reflected in the type of a formal language favored by
either methods.

Descriptive formal methods emphasize the expressive power of the underlying language and provide a
rich type system, often leveraging the notations of conventional mathematics or set theory. These choices
in language elements do not readily support automation; instead, descriptive methods typically offer
attractive user interfaces and little in the way of deductive machinery. These methods assume that the
specification process itself serves as verification, as expressing the requirements in mathematical form
leads to detect inconsistencies that are typically overlooked in natural language descriptions. Examples of
primarily descriptive formal methods are VDM [48], Z [49], B [50], or LOTOS [51].

Analytic formal methods place emphasis on mechanization and favor specification languages that are
less expressive but capable of supporting efficient automated deduction. These methods vary in the
degree of automation provided by the theorem prover, or, conversely, by the amount of user interaction
in the proof process. They range from automatic theorem proving without user interaction to proof
checking without automatic proof steps. The former typically have restricted specification languages and
powerful provers that can be difficult to control and offer little feedback on failed proofs, but perform
impressively in the hands of experts, for example, Nqthm [52]. Proof checkers generally offer more
expressive languages, but require significant manual input for theorem proving, for example, high-order
logic (HOL) [53]. Many tools fall somewhere in between, depending on language characteristics and proof
methodology, for example, Eves [54,55], or PVS [56]. The goal of mechanized analysis may be either to
prove the equivalence between different representations of initial requirements or to establish properties
that are considered critical for correct system behavior (safety, liveness, etc.).

Tools for analytic formal methods fall into two main categories: state exploration tools (model checkers)
and deductive verifiers (automated theorem provers). Model checking [57] is an approach for formally
verifying finite-state systems. Formalized requirements are expressed as temporal logic formulas, and
efficient symbolic algorithms are used to process a model of the system and check if the specification
holds in that model. Widely known tools are VeriSoft [58], SMV [59], or SPIN [60]. Some deductive
verifiers either support inference in first order (Larch [61]), others, such as PVS [62], are based on
higher-order languages integrated with supporting tools and interactive theorem provers.

Today, descriptive methods are often augmented by facilities of mechanized analysis. Also, automated
theorem proving and model checking approaches may be integrated in a single environment. For example,
a BDD-based model checker can be used as a decision procedure in the PVS [63] theorem prover. In addi-
tion to the prover or proof checker, a key feature of analytic tools is the type checker which checks

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 22 — #22

6-22 Embedded Systems Handbook

specifications for semantic consistency, possibly adding semantic information to the internal representa-
tion built by the parser. If the type system of the specification language is not decidable, theorem proving
may be required to establish the type consistency of a specification. An overview of verification tools and
underlying methods can be found in Reference 64.

The most severe limitation to the deployment of formal methods is the need for mathematical soph-
isticated users, for example, with respect to the logical notation these methods use, which is often an
insurmountable obstacle to the adoption of these methods in engineering disciplines. General-purpose
decision procedures, as implemented in most of these methods, are not scalable to the size of industrial
projects. Another obstacle to the application of deductive tools like PVS is the necessity to develop a math-
ematical theory formalized on a very detailed level to implement even very simple predicates. Recently,
formal methods were successfully applied to specification and design languages widely accepted in the
engineering community, such as MSC [65], SDL [51], or UML [66]. Several tool vendors participate in
the OMEGA project aimed at the development of formal tools for the analysis and verification of design
steps based on UML specifications [67]. SDL specifications can be checked by model checkers as well
as automated theorem provers: for example, the IF system from Verimag converts SDL to PROMELA as
input to the SPIN model checker [68]. At Siemens, verification of the GSM protocol stack was conducted
using the BDD-based model checker SVE [69]. An integrated framework for processing SDL specification
has been implemented based on the automated theorem prover ACL2 [70]. Ptk [71] provides semantic
analysis of MSC diagrams and generates test scripts from such diagrams in a number of different languages
including SDL, TTCN, and C. FatCat [72] locates situations of nondeterminacy in a set of MSC diagrams.

In the following, we give a cursory overview of some of the wider known tools supporting the application
of formal methods to specifications. This survey reviews only tools that are freely available, at least
for research use. A number of powerful commercial verification technologies have been developed, for
example: ACL2 (Computational Logic, USA), ASCE (Adelard, UK), Atelier B (STERIA Méditerranée,
France), B-Toolkit (B-Core, UK), CADENCE (Cadence, USA), Escher (Escher Technologies, UK), FDR
(Formal Systems, UK), ProofPower (ICL, UK), Prover (Prover Technology, Sweden), TAU (Telelogic),
Valiosys (Valiosys, France), and Zola (Imperial Software, UK). A more detailed survey of commercial tools
aimed at formal verification is given in Reference 73.

The tools and environments surveyed provide only a sample of the wide variety of tools available. In
particular, in the area of model checking a large number of implementations support the verification
of specifications written in different notations and supporting different temporal logics. For example,
Kronos [74] allows modeling of real time systems by timed automata, that is, automata extended with
a finite set of real-valued clocks, used to express timing constraints. It supports TCTL, an extension of
temporal logic that allows quantitative temporal claims. UPAAL [75] represents systems as networks of
automata extended with clocks and data variables. These networks are compiled from a nondeterministic
guarded command language with data types. The VeriSoft [58] model checker explores the state space of
systems composed of concurrent processes executing arbitrary code (written in any language) and searches
for concurrency pathologies such as deadlock, lifelock, divergence, and for violation of user-specified
assertions.

6.3.2.1 Descriptive Tools

6.3.2.1.1 Vienna Development Method [76]
Vienna development method (VDM) is a model-oriented formal specification and design method based
on discrete mathematics, originally developed at IBM’s Vienna Laboratory. It is a model-oriented formal
specification and design method based on discrete mathematics. Tools to support formalization using
VDM include parsers, typecheckers, proof support, animation, and test case generators. In VDM, a
system is developed by first specifying it formally and proving that the specification is consistent, then
iteratively refining and decomposing the specification provided that each refinement satisfies the previous
specification. This process continues until the implementation level is reached.

The VDM Specification Language (VDM-SL) was standardized by ISO in 1996 and is based on first-
order logic with abstract data types. Specifications are written as constructive specifications of an abstract

Letichevsky
Note
?

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 23 — #23

System Validation 6-23

data type, by defining a class of objects and a set of operations that act upon these objects. The model of
a system or subsystem is then based on such an abstract data type. A number of primitive data types are
provided in the language along with facilities for user-defined types.

VDM has been used extensively in Europe [48,77,78]. Tools have been developed to support
formalization using VDM, for example, Mural [79] which aids formal reasoning via a proof assistant.

6.3.2.1.2 Z [49,80]
Z evolved from a loose notation for formal specifications to a standardized language with tool support
provided by a variety of third parties. The formal specification notation has been developed by the
Programming Research Group at Oxford University. It is based on Zermelo-Fraenkel set theory and
first-order predicate logic. Z is supported by graphical representations, parsers, typecheckers, pretty-
printers, and a proof assistant implemented in HOL providing proof checkers as well as a full-fledged
theorem prover. The standardization of Z through ISO solidified the tool base and enhanced interest in
mechanized support.

The basic Z form is called a schema, which is used to introduce functions. Models are constructed by
specifying a series of schemata using a state transition style. Several object-oriented extensions to Z have
been proposed.

Z has been used extensively in Europe (primarily in the United Kingdom) to write formal specifications
for various industrial software development efforts and has resulted in two awards for technological
achievement: for the IBM CICS project and for a specification of the IEEE standard for floating-point
arithmetic. To leverage Z in embedded systems design, Reference 81 extended Z by temporal interval logic
and automated reasoning support through Isabelle and the SMV model checker.

6.3.2.1.3 B [50]
Following the B method, initial requirements are represented as a set of abstract machines, for which an
object-based approach is employed at all stages of development. B relies on a wide-spectrum notation to
represent all levels of description, from specification through design to implementation.

After specifying requirements, they can be checked for consistency which for B means preserva-
tion of invariants. In addition, B supports checking correctness of the refinement steps to design and
implementation.

B is supported through toolkits providing syntax checkers, type checkers, a specification animator,
proof-obligation generator, provers allowing different degrees of mechanization, and a rich set of
coding tools. It also includes convenient facilities for documenting, cross-referencing, and reviewing
specifications.

The B method is popular in industry as well as in the academic community. Several international
conferences on B have been conducted. An example of the use of B in embedded systems design is
reported in Reference 82 which promotes the development of correct software for smart cards through
translation of B specifications into embedded C code.

6.3.2.1.4 Rigorous Approach to Industrial Software Engineering [83,84]
Rigorous Approach to Industrial Software Engineering (RAISE) is based on a development method-
ology that evolved from the VDM approach. Under the RAISE methodology, development steps are
carefully organized and formally annotated using the RAISE specification language which is a powerful
wide-spectrum language for specifying operations and processes allowing derivations between levels of
specifications. It provides different styles of specification: model-oriented, algebraic, functional, imper-
ative, and concurrent. The CORE requirements method is also provided as an approach for front-end
analysis. Supporting tools provide a window-based editor, parser, typechecker, proof tools, a database,
and translators to C and Ada.

Derivations from one level to the next generate proof obligations. These obligations may be dis-
charged using proof tools which are also used to perform validation (establishing system properties).
Detailed descriptions of the development steps and overall process are available for each tool. The final
implementation step has been partially mechanized for common implementation languages.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 24 — #24

6-24 Embedded Systems Handbook

6.3.2.1.5 Common Algebraic Specification Language [85]
Common Algebraic Specification Language (CASL) was developed as a language for formal specification
of functional requirements and modular software design that subsumes many algebraic specification
frameworks and also provides tool interoperability. CASL is a complex language with a complete formal
semantics comprising a family of formally defined specification languages meant to constitute a common
framework for algebraic specification and development [86]. To make tool construction manageable,
it allows for reuse of existing tools, for interoperability of tools developed at different sites, and for
construction of generic tools that can be used for several languages.

The CASL Tool Set, CATS, combines a parser, a static checker, a pretty printer, and facilities for
translation of CASL to a number of different theorem provers. Encoding eliminates subsorting and
partiality, and thus allows reuse of existing theorem proving tools and term rewriting engines for CASL.
Typical applications of a theorem prover in the context of CASL are checking semantic correctness
(according to the model semantics) by discarding proof obligations that have been generated during
checking of static semantic constraints and validating intended consequences, which can be added to a
specification using annotations. This allows a check for consistency with informal requirements.

In the scope of embedded systems verification, the Universal Formal Methods (UniForM) Workbench
has been deployed in the development of railway control and space systems [87]. This system aims to
provide a basis for interoperability of tools and the combination of languages, logics, and methodologies.
It supports verification of basic CASL specification encoded in Isabelle and the subsequent implementation
of transformation rules for CASL to support correct development by transformation.

6.3.2.1.6 Software Cost Reduction [88]
Software cost reduction (SCR) is a formal method for modeling and validating system requirements. SCR
models a system as a black box computing output data from the input data. System behavior is represented
as a finite-state machine. SCR is based on tabular notations that are relatively easy to understand. To
develop correct requirements with SCR, a user shall perform four types of activities supported by SCR
tools.

First, a specification is developed using the SCR tabular notation using the specification editor. Second,
the specification is automatically analyzed for violations of application-independent proprieties, such as
nondeterminism and missing cases, using an extension of the semantic tableaux algorithm. To validate the
specification, the user may run scenarios, sequences of observable events, through the SCR simulator and
for checking application-dependent properties the user can apply the Spin model checker by translating
the specification into Promela.

A toolset has been developed by the Naval Research Laboratory, including a specification editor, a sim-
ulator for symbolically executing the specification, and formal analysis tools for testing the specification
for selected properties.

SCR has been applied primarily to the development of embedded control systems including the A-7E
aircrafts operational flight program, a submarine communications system, and safety-critical components
of two nuclear power plants [89].

6.3.2.1.7 EVES [55]
EVES is an integrated environment supporting formal development of systems from requirements to code.
Additionally, it may be used for formal modeling and mathematical analysis. To date, EVES applications
have primarily been in the realm of security-critical systems.

EVES relies on the wide-spectrum language Verdi, ranging from a variant of classical set theory with a
library mechanism for information hiding and abstraction to an imperative programming language. The
EVES mathematics is based on ZFC set theory without the conventional distinction between terms and
formulae. Supporting tools are a well-formedness checker, the integrated automated deduction system
NEVER, a proof checker, reusable library framework, interpreter, and compiler.

Development is treated as theory extension: each declaration extends the current theory with a set of
symbols and axioms pertaining to those symbols. Proof obligations are associated with every declaration

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 25 — #25

System Validation 6-25

to guarantee conservative extension. The EVES library is a repository of reusable concepts (e.g., a variant
of the Z mathematical toolkit is included with EVES) and is the main support for scaling, information
hiding, and abstraction. Library units are either specification units (axiomatic descriptions), model units
(models or implementations of specifications), or freeze units (for saving work in progress).

6.3.2.2 Deductive Verifiers

6.3.2.2.1 High-Order Logic [53]
High-order logic is an environment for interactive theorem proving in HOL, that is, predicate calculus
with terms from the typed lambda calculus. HOL provides a parser, pretty-printer, typechecker, as well as
forward and goal oriented theorem provers. It interfaces HOL to the MetaLanguage (ML) which allows
representation of terms and theorems of the logic, of proof strategies, and of logical theories.

The HOL system is an interactive mechanized proof assistant. It supports both forward and backward
proofs. The forward proof style applies inference rules to existing theorems in order to obtain new
theorems and eventually the desired goal. Backward or goal oriented proofs start with the goal to be
proven. Tactics are applied to the goal and subgoals until the goal is decomposed into simpler existing
theorems.

HOL provides a general and expressive vehicle for reasoning about various classes of systems. Some of
the applications of HOL include the specification and verification of compilers, microprocessors, interface
units, algorithms, and formalization of process algebras, program refinement tools, and distributed
algorithms.

Initially, HOL was aimed at hardware specification and verifying but later its application was extended
to many other domains. Since 1988 an annual meeting of the HOL community evolved into a large
international conference.

6.3.2.2.2 Isabelle [90]
Isabelle, developed at Cambridge University, is a generic theorem prover providing a high degree of auto-
mation and supporting a wide variety of built-in logics: many-sorted first-order logic, constructive and
classical versions, higher-order logic, Zermelo–Fraenkel set theory, an extensional version of Martin-Löf ’s
Type Theory, two versions of the Logic for Computable Functions, the classical first-order sequent cal-
culus, and modal logic. New logics are introduced by specifying their syntax and inference rules. Proof
procedures can be expressed using tactics. A generic simplifier performs rewriting by equality relations and
handles conditional and permutative rewrite rules, performs automatic case splits, and extracts rewrite
rules from context. A generic package supports classical reasoning in a first-order logic, set theory, etc.
The proof process is automated to allow long chains of proof steps, reasoning with and about equations,
and proofs about facts of linear arithmetic.

Isabelle aims at the formalization of mathematical proofs. Some large mathematical theories have been
formally verified and are available to a user. These include elementary number theory, analysis, and set
theory. For example, Isabelle’s Zermelo–Fraenkel set theory derives general theories of recursive functions
and data structures (including mutually recursive trees and forests, infinite lists, and infinitely branching
trees).

Isabelle has been applied to formal verification as well as reasoning about the correctness of computer
hardware, software, and computer protocols. Reference 91 has applied Isabelle to prove correctness
of safety-critical embedded software: an HOL implemented in Isabelle has been used to model both
specification and implementation of initial requirements; the problem of implementation correctness is
reduced to a mathematical theorem to be proven.

6.3.2.2.3 PVS [56,62]
PVS provides an integrated environment for the development and analysis of formal specifications and
is intended primarily for the formalization of requirements and design-level specifications, and for the
rigorous analysis of difficult problems. It has been designed to benefit from synergetic usage of different
formalisms in its unified architecture.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 26 — #26

6-26 Embedded Systems Handbook

The PVS specification language is based on classical, typed HOL with predicate subtypes, dependent
typing, and abstract data types. The highly expressive language is tightly integrated with its proof system
and allows automated reasoning about type dependencies. PVS offers a rich type system, strict typecheck-
ing, and powerful automated deduction with integrated decision procedures for linear arithmetic and
other useful domains, and a comprehensive support environment. PVS specifications are organized into
parameterized theories that may contain assumptions, definitions, axioms, and theorems. Definitions are
guaranteed to provide conservative extension. Libraries of proved specifications from a variety of domains
are available.

The PVS prover supports a fully automated mode as well as an interactive mode. In the latter, the
user chooses among various inference primitives (induction, quantifier reasoning, conditional rewriting,
simplification using specific decision procedures, etc.). Automated proofs are based on user-defined
strategies composed from inference primitives. Proofs yield scripts that can be edited and reused. Model-
checking capabilities are integrated with the verification system and can be applied for automated checking
of temporal properties.

PVS has been applied to algorithms and architecture for fault-tolerant flight control systems, to prob-
lems in real-time system design, and to hardware verification. Reference 92 combined PVS with industrial,
UML-based development. Similarly, the Boderc project at the Embedded Systems Institute aims to integ-
rate UML-based software design for embedded systems into a common framework that is suitable for
multidisciplinary system engineering.

6.3.2.2.4 Larch [61]
Larch is a first-order specification language supporting equational theories embedded in a first-order logic.
The Larch Prover (LP) is designed to treat equations as rewrite rules and carry out other inference steps
such as induction and proof by cases. The user may introduce operators and assertions about operators
as part of the formalization process. The system is comprised of parser, type checker, and a user-directed
prover.

Larch Prover is designed to work midway between proof checking and fully automatic theorem proving.
Users may direct the proof process at a fairly high level. LP attempts to carry out routine steps in a proof
automatically and provide useful information about why proofs fail, but is not designed to find difficult
proofs automatically.

6.3.2.2.5 Nqthm [52]
Nqthm is a toolset based on the powerful heuristic Boyer–Moore theorem prover for a restricted logic
(a variant of pure applicative Lisp). There is no explicit specification language; rather, one writes spe-
cifications directly in the Lisp-like language that encodes the quantifier-free, untyped logic. Recursion
is the main technique for defining functions and, consequentially, mathematical induction is the main
technique for proving theorems. The system consists of parser, pretty-printer, limited typechecker (the
language is largely untyped), theorem prover, and animator.

The highly automated prover can be driven by large databases of previously supplied (and proven)
lemmas. The tool distribution comes with many examples of formalized and proved applications. For
over a decade, the Nqthm series of provers has been used to formalize a wide variety of computing problems
including safety-critical algorithms, operating systems, compilers, security devices, microprocessors, and
pure mathematics. Two well-known industrial applications are a model of a Motorola digital signal
processing (DSP) chip and the proof of correctness of the floating point division algorithm for the
AMD5K 86 microprocessor.

6.3.2.2.6 Nuprl [93]
Nuprl was originally designed by Bates and Constable at Cornell University and has been expanded and
improved over the past 15 yr by a large group of students and research associates. Nuprl is a highly
extensible open system that provides for interactive creation of proofs, formulae, and terms in a typed
language which is constructive type theory with extensible syntax. The Nuprl system supports HOLs and
rich type theories. The logic and the proof systems are built on a highly regular untyped term structure,

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 27 — #27

System Validation 6-27

a generalization of the lambda calculus and mechanisms given for reduction of such terms. The style of
the Nuprl logic is based on the stepwise refinement paradigm for problem solving in which the system
encourages the user to work backwards from goals to subgoals until one reaches what is known.

Nuprl provides a window-based interactive environment for editing, proof generation, and function
evaluation. The system incorporates a sophisticated display mechanism that allows users to customize the
display of terms. Based on structure editing, the system is free to display terms without regard to parsing
of syntax. The system also includes the functional programming language ML as its metalanguage; users
extend the proof system by writing their own proof generating programs (tactics) in ML. Since tactics
invoke the primitive Nuprl inference rules, user extensions via tactics cannot corrupt system soundness.
The system includes a library mechanism and is provided with a set of libraries supporting the basic types
including integers, lists, and Booleans.

The system also provides an extensive collection of tactics. The Nuprl system has been used as a research
tool to solve open problems in constructive mathematics. It has been used in formal hardware verification,
as a research tool in software engineering, and to teach mathematical logic to Cornell undergraduates.
It is now being used to support parts of computer algebra and is linked to the Weyl computer algebra
system.

6.3.2.3 State Exploration Tools

6.3.2.3.1 Symbolic Model Verifier (SMV) [59]
The SMV system is a tool for checking finite-state systems against specifications of properties. Its high-
level description language supports modular hierarchical descriptions and the definition of reusable
components. Properties are described in Computation Tree Logic (CTL), a propositional, branching-time
temporal logic. It covers a rich class of properties including safety, liveness, fairness, and deadlock freedom.

The SMV input language offers a set of basic data types consisting of bounded integer subranges and
symbolic enumerated types, which can be used to construct static, structured types. SMV can handle
both synchronous and asynchronous systems, and arbitrary safety and liveness properties. SMV uses a
BDD-based symbolic algorithm of model checking to avoid explicitly enumerating the states of the model.
With carefully tuned variable ordering, the BDD algorithm yields a system capable of verifying circuits
with extremely large numbers of states.

The SMV system has been distributed widely and has been used to verify industrial-scale circuits and
protocols, including the cache coherence protocol described in the IEEE Futurebus+ standard and the
cache consistency protocol developed at Encore Computer Corporation for their Gigamax distributed
multiprocessor. Formal verification of embedded systems using symbolic model checking with SMV has
been demonstrated in Reference 94: a Petri net-based system model is translated into the SMV input
language along with the specification of timing properties.

6.3.2.3.2 Spin [60,95,96]
Spin is a widely distributed software package that supports the formal verification of distributed systems
It was developed by the formal methods and verification group at Bell Laboratories.

Spin relies on the high-level specification language PROMELA (Process MetaLanguage), a non-
deterministic language based on Dijkstra’s guarded command language notation and CSP. PROMELA
contains primitives for specifying asynchronous (buffered) message passing via channels with an arbit-
rary number of message parameters. It also allows for the specification of synchronous message passing
systems (rendezvous) and mixed systems, using both synchronous and asynchronous communications.
The language can model dynamically expanding and shrinking systems, as new processes and message
channels can be created and deleted on the fly. Message channel identifiers can be passed in messages from
one process to another.

Correctness properties can be specified as standard system or process invariants (using assertions), or
as general Linear Temporal Logic (LTL) requirements, either directly in the syntax of next time free LTL, or
indirectly as Büchi Automata (expressed in PROMELA syntax as never claims). Spin can be used in three
modes: for rapid prototyping with random, guided, or interactive simulation; as an exhaustive verifier,

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 28 — #28

6-28 Embedded Systems Handbook

capable of rigorously proving the validity of user-specified correctness requirements (using partial order
reduction to optimize search); and as proof approximation system that can validate very large protocol
systems with maximal coverage of the state space.

Spin has been applied to the verification of data transfer and bus protocols, controllers for reactive
systems, distributed process scheduling algorithms, fault-tolerant systems, multiprocessor designs, local
area network controllers, microkernel design, and many other applications. The tool checks the logical
consistency of a specification. It reports on deadlocks, unspecified receptions, and flags incompleteness,
race conditions, and unwarranted assumptions about the relative speeds of processes.

6.3.2.3.3 COordination SPecification ANalysis (COSPAN) [97]
The COSPAN is a general purpose, rapid prototyping tool developed at AT&T that provides a theoretically
seamless interface between an abstract model and its target implementation, thereby supporting top-down
system development and analysis. It includes facilities for documentation, conformance testing, software
maintenance, debugging, and statistical analysis, as well as libraries of abstract data types and reusable
pretested components.

The COSPAN input language, S/R (selection/resolution), belongs to the omega-regular languages which
are expressible as finite-state automata on infinite strings or behavioral sequences. COSPAN is based on
homomorphic reduction and refinement of omega-automata, that is, the use of homomorphisms to
relate two automata in a process based on successive refinement that guarantees that properties veri-
fied at one level of abstraction hold in all successive levels. Reduction of the state space is achieved by
exploiting symmetries and modularity inherent in large, coordinating systems. Verification is framed as
a language-containment problem: checking consists of determining whether the language of the system
automaton is contained in the language of the specification automaton. Omega-automata are partic-
ularly well-suited to expressing liveness properties, that is, events that must occur at some finite, but
unbounded time.

The COSPAN has been used in the commercial development of both software and hardware systems:
high-level models of several communications protocols, for example, the X.25 packet switching link
layer protocol, the ITU file transfer and management protocol (FTAM), and AT&T’s Datakit universal
receiver protocol (URP) level C; verification of a custom VLSI chip to implement a packet layer protocol
controller; and analysis and implementation of AT&T’s Trunk Operations Provisioning Administration
System (TOPAS).

6.3.2.3.4 MEIJE [98]
The MEIJE project at INRIA and the Ecole des Mines de Paris has long investigated concurrency theory
and implemented a wide range of tools to specify and verify both synchronous and asynchronous reactive
systems. It uses Esterel, a language designed to specify and program synchronous reactive systems, and a
graphical notation to describe labeled transition systems.

The tools (graphical editors, model checkers, observer generation) operate on the internal structure of
automata combined by synchronized product which are generated either from the Esterel programs or
from the graphical representations of these automata. MEIJE supports both explicit representation of the
automata supporting model checking and compositional reduction of systems using bisimulation or
hiding, as well as implicit representation of the automata favoring verification through observers and
forward search for properties to verify. To deal with the large state spaces induced by realistic-sized
specifications, the MEIJE tools provide various abstraction techniques, such as behavioral abstraction
which replaces a sequence of actions by a single abstract behavior, state compression and encoding
in BDD, and on-the-fly model checking. Observers can be either directly written in Esterel or can be
generated automatically from temporal logic formulae.

6.3.2.3.5 CADP [99]
The CADP, developed at INRIA and Verimag, is a tool box for designing and verifying concurrent protocols
specified in the ISO language LOTOS and to study formal verification techniques. Systems are specified as
networks of communicating automata synchronizing through rendevous or labeled transition systems.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 29 — #29

System Validation 6-29

The CAESAR compiler translates the behavioral part of LOTOS specifications into a C program that can
be simulated and tested or into a labeled transition system to be verified by ALDEBARAN. The latter allows
the comparison and reduction of labeled transition systems by equivalences of various strength (such as
bisimulation, weak bisimulation, branching bisimulation, observational equivalence, tau bisimulation,
or delay bisimulation). Diagnostic abilities provide the user with explanations when the tools failed
to establish equivalence between two labeled transition systems. The OPEN environment provides a
framework for developing verification algorithms in a modular way, and various tools are included:
interactive simulators, deadlock detection, reachability analysis, path searching, on-the-fly model checker
to search for safety, liveness, and fairness properties, and a tool for generating test suites.

6.3.2.3.6 Murphi [100]
Murphi is a complete finite-state verification system that has been tested on extensive industrial-
scale, examples including cache coherence protocols and memory models for commercially designed
multiprocessors.

The Murphi verification system consists of the Murphi compiler, and the Murphi description language
for finite-state asynchronous concurrent systems which is loosely based on Chandy and Misra’s Unity
model and includes user-defined data types, procedures, and parameterized descriptions. A version for
synchronous concurrent systems is under development. A Murphi description consists of constant and
type declarations, variable declarations, rule definitions, start states, and a collection of invariants. The
Murphi compiler takes a Murphi description and generates a C++ program that is compiled into a special-
purpose verifier that checks for invariant violations, error statements, assertion violations, deadlock, and
liveness. The verifier attempts to enumerate all possible states of the system, while the simulator explores
a single path through the state space. Efficient encodings, including symmetry-based techniques, and
effective hash-table strategies are used to alleviate state explosion.

6.4 Specifying and Verifying Embedded Systems

The problems of consistency and completeness of requirements viewed as mathematical problems are
well known to be algorithmically unsolvable even for notations solely based on the first-order predicate
calculus. To overcome these difficulties, we have studied the general form of the requirements used in
specific subject domains and developed methods of proving sufficient conditions of consistency and
completeness.

Each requirements specification defines a class of systems compatible with the requirements. All systems
in this class are defined at least up to bisimulation, that is, systems with the same observable behavior
are considered as equal. However, systems often operate in the context of some environment; when
requirements describe the properties of the environment into which a system is inserted, the weaker
notion of insertion equivalence is used to distinguish different systems. If the class of systems compatible
with the requirements is not empty, we consider the requirements to be consistent. If the class contains
only one system (up to bisimulation or insertion equivalence, respectively), the requirements are said to
be complete.

To represent requirements, we distinguish between a class of logical requirement languages representing
behavior in logical form, a class of trace languages, representing behavior in the form of traces, and a
class of automata networks languages, representing behavior in terms of states and transitions. The latter
are model-oriented [101], in that desired properties or behaviors are specified by giving a mathematical
model that exhibits those properties. The disadvantage of model-oriented specifications is that they state
what should be done or how something should be implemented, rather than the properties that are
required. For property-oriented [101] languages, each description defines not a single model, but a class
of models which satisfy the properties defined by the description. The properties expressed are properties
of attributed transition systems representing environments and agents inserted into these environments.
Only actions and the values of attributes are observable for inserted agents.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 30 — #30

6-30 Embedded Systems Handbook

6.4.1 System Descriptions and Initial Requirements

The descriptions of observable entities (attributes) of a system and the external environment, their types,
and the parameters they depend on, are captured in first-order predicate logic extended by types and certain
predefined predicates such as equality or arithmetic inequality. The signature of the language contains a set
of attribute names, where each attribute has a type which is defined using direct or axiomatic definitions.
Operations defined on the sets of values of different types are used to construct value expressions (terms)
from attribute symbols, variables, and constants. If an expression contains attributes, the value of this
expression depends not only on the values of its variables, if any, but also on the current state of the
environment. Consequentially, it defines a function on the set of states of an environment.

The language includes the temporal modalities always and sometimes. Logical statements define
properties of the environment, characterize agent actions, or define abstract data types.

Initial requirements describe the initial state as a logical statement. If initial requirements are present,
requirements refer only to the states reachable from initial states, which are those states satisfying the
initial requirements. To describe initial requirements, we use a temporal modality initially.

Axioms about the system are introduced by the form

let <name> : <statement>;

6.4.2 Static Requirements

Static requirements define the change of attributes at any given moment or interval of time depending on
the occurrence of events and the previous history of system behavior. Static requirements describe the
local behavior of a system, that is, all possible transitions which may be taken from the current state if
it satisfies the precondition, after the event forcing these transitions has happened. The general form of
static requirements is

req <name>:[<prefix>]([<precondition>] -> [after <event description>] <postcondition>);

The precondition is a predicate formula of first-order logic, true before the transition; the postcondition is
a predicate formula of first-order logic, true after the transition. Both precondition and postcondition may
refer to a set of attributes used in the system. Variables are typed and may occur in precondition, event, and
postcondition; they link the values of attributes before and after the transition. Only universal quantifiers
are allowed in the quantifier prefix. All attributes occur free in the requirements, but if an attribute depends
on parameters, the algebraic expressions substituted for the parameter may contain bound variables.

If the current state of the environment satisfies the precondition, and allows the event, then after
performing this action the new state of the system will satisfy the property expressed by the postcondition.
This notation corresponds to Hoare-style triples.

Predicates are defined on sets of values, and predicate expressions can be constructed using predicate
symbols and value expressions to express properties of states of environments (if they include attributes).
The quantifiers forall and exists can be used, as well as the usual propositional connectives.

The precondition is a logical statement without explicit temporal modalities and describes observable
properties of a system state. It may include predefined temporal functionals that depend on the past
behavior of a system or its attributes, for example, the duration functional dur: if P is a statement, then
dur P denotes the time passed from the last moment when P became true; its value is a number (real for
continuous time and an integer for discrete time).

The event denotes the cause of a transition or a change of attribute values. The simplest case of an
event is an action. More complex examples are sequences of actions or finite behaviors (i.e., the event is an
algebraic expression generated by actions, prefixing, nondeterministic choice, and sequential and parallel
compositions). To describe histories we use product P ∗ Q and iteration It(P) over logical statements.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 31 — #31

System Validation 6-31

The postcondition is a logical statement denoting the property of attribute values after the transition
defined by the static requirement has been completed. It cannot include temporal modalities as well as
functionals depending on the past.

As an example, consider a system which counts the number of people entering a room. The requirement
for an action enter could be written as:

req Enter: Forall(n : int)((num = n)− > after(enter) (num = n+ 1));

where num is a system attribute representing the number of people in the room. The variable n links the
value of the attribute num before and after the transition caused by the enter action.

6.4.3 Dynamic Requirements

Dynamic requirements are arbitrary logical statements including temporal modalities and functionals.
They should be the consequences of static requirements and, therefore, dynamic requirements are
formulated as calls to the prover to establish a logic statement:

prove<statement>;

We use the temporal modalities always and sometimes, as well as the temporal functional dur and
Kleene operations (product and iteration) over logical statements. Temporal statements refer to properties
of attributed transition systems with initial states. A logical statement without modalities describes a
property of a state of a system while temporal statements describe properties of all states reachable from
admissible initial states: if P is a predicate formula, the formula always P means that any state reachable
from an admissible initial state possesses property P . The formula sometimes P means that there exists
a reachable state that possesses property P . The notion of reachability can be expressed in set-theoretical
terms. Temporal modalities can be translated to first-order logic by introducing quantifiers on states and
consequentially, it is possible to use first-order provers for proving properties of environments.

For synchronous systems (systems with explicit time assignments at each state) we introduce the
functional (E time t) for arbitrary expression E (terms or statements) and integer expression t which
denotes the value of Eat time t . Then always and sometimes are defined as:

always P ⇔ (∀t ≥ 0)(P time t)

sometimes P ⇔ (∃t ≥ 0)(P time t)

The functional dur is defined in the following way [102]:

(dur P = s) time t ⇔ (t ≥ s)∧ ∼ (P) time (t − s) ∧ (∀s ′)((t ≥ s ′ > t − s)→ P time s ′)

Statements, which do not explicitly mention state or time are considered as referring to an arbitrary
current state or an arbitrary current moment of time. Statements with Kleene operations refer to discrete
time and are reduced to logical statements as follows:

(P∗1 P∗2 . . .∗ Pn) time t ⇔ (P1 time (t − n + 1)) ∧ (P2 time (t − n + 2)) ∧ · · · ∧ (Pn time t)

It(P) time t ⇔ (∃s ≤ t)(∀s ′)((t − s ≤ s ′ ≤ t)→ P time s ′)

6.4.4 Example: Railroad Crossing Problem

The railroad crossing problem is a well-known benchmark to assess the expressiveness of development
techniques for interactive systems. We illustrate the description of a synchronous system (in discrete time)

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 32 — #32

6-32 Embedded Systems Handbook

relying on duration functionals. The problem statement is to develop a control device for a railroad
crossing so that safety and liveness conditions are satisfied. This system has three components, as shown
in Figure 6.4).

The n-track railroad has the following observable attributes: InCr is a Boolean variable equal to 1 if
a train is at the crossing; Cmg(i) is a Boolean variable equal to 1 if a train is coming on track number i.
At the moment this attribute becomes equal to 1, the time left until the train will reach the crossing is not
less than d_min and it remains 1 until the train reaches the crossing. Cmg(i) is an input signal to the
controller which has a single output signal DirOp. When DirOp equals to 1, the gate starts opening, and
when it becomes 0, the gate starts closing. The attribute gate shows the position of the gate. It is equal
to open when the gate is completely opened and closed if it is completely closed. The time taken for
the gate to open is d_open, the time taken to close is d_close. The requirements text below omits the
straightforward static requirements. The dynamic properties of the system are safety and liveness. Safety
means that when the train is at the crossing, the gate is closed. Liveness means that the gate will open
when the train is at a safe distance (Code 6.1).

n-track railroad Controller Gate

InCr Gate

Cmg DirOp

n

FIGURE 6.4 Railroad crossing problem.

Code 1

parameters(
d_min,
d_close,
d_open,
WT);

attributes(n:int)(
InCr:bool,
Cmg(n):bool,
DirOp:bool,
gate);

let C1:(d_min>d_close);
let C2:(d_close>0);
let Duration Theorem: Forall(x,d)(

always(dur Cmg(x) > d -> ˜(DirOp))->
always(dur ˜(DirOp) > dur Cmg(x)+(-1)*(d+1)));

/* ------------- Environment spec ------------------------ */
let CrCm: always(InCr->Exist x (dur Cmg(x) > d_min));
let OpnOpnd:always(dur DirOp >d_open ->(gate=opened));
let ClsClsd:always(dur ˜(DirOp)>d_close->(gate=closed));

/* ------------ Controller spec ------------------------ */
let Contr1: always(Exist x (dur Cmg(x) > WT) -> ˜(DirOp));
let Contr2: always(Forall x (WT >= dur Cmg(x)) -> DirOp);

/* ------------- Safety and Liveness --------------------- */
let(WT=d_min+(-1)*d_close);
prove Safety: always(InCr->(gate=closed));
prove Liveness: always(

Forall x ((WT > dur Cmg x) -> (gate=opened)));

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 33 — #33

System Validation 6-33

Note the assumption of the Duration Theorem in the requirements to shorten the proofs of safety and
liveness.

6.4.5 Requirement Specifications

The example in Section 6.4.4 is rather simple in the number of requirements. Requirement specifications
used in practice to describe embedded systems are typically much more complex. Requirement specific-
ations may consist of hundreds or thousands of static requirements, and a large domain descriptions
through attributes and parameters. Each requirement is usually simple but taken together the resultant
behavior may be complex and contain inconsistencies or be incomplete.

We use attributed transition systems to describe the requirements for embedded systems. The formal
specification of requirements consists of the environment description, the description of common system
properties in the form of axioms, the insertion function defined by static requirements, and intended
properties of the system as a whole defined as dynamic requirements.

A typed list of system parameters and a typed list of system attributes are used to describe the structure
of the environment. The parameters of the system are variables, which have influence on the behavior of
the environment and can change their values from one configuration of the system to another but they
never change their value during the execution of the system. Examples of system parameters are the set of
tasks for an embedded operating system, the bus threshold for a device controller, etc. System attributes
are variables that differ between the observable states of the environment. Attributes may change their
values during runtime. Examples of attributes are the queue of tasks, which are ready to be executed by
the operating system, or the current data packet for a device controller.

As an example, we consider (in simplified form) several fragments of the formalized requirements for
an embedded operating system for automotive electronics, OSEK [103]. A typed list of system parameters
and a typed list of system attributes describes the structure of the environment (Code 6.2).

Code 2

parameters (
tasks: Set of name,
resources: Set of name

);
attributes (
suspended: Set of name,
ready: Set of name,
running: name

);

Parameters of the system are variables, which have influence on the behavior of the environment and
can change their values from one configuration of the system to another, but never change their value
during the execution of the system.

The operating system (environment) and executing tasks (agents) interact via service calls. The list of
actions contains the names of the services defined provided by the system, including service parameters,
if any (Code 6.3).

Common system properties are defined as a propositions in first-order logic extended with temporal
modalities. For example, consider the following requirements: “the length of the queue of suspended
tasks can never be greater than the set of defined tasks.” We will formalize this requirement as follows
(Code 6.4).

To define the transitions of the system when processing the request for a service we use Hoare-style
triples notation, as defined above (Code 6.5).

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 34 — #34

6-34 Embedded Systems Handbook

Code 3

a: name) (
Activate a,
Terminate,
Schedule);

Code 4

Let SuspendedLengthReq:
Always ((length(suspended)<|tasks|) |/ (length(suspended) = |tasks|));

Code 5

req Activate1: Forall (a:name, s: Set of name, r: Set of name) (
((suspended = s) & (ready = r) & (a in s))
-> after (Activate a)
((suspended = (s setminus a)) & (ready = (r union a))));

The insertion function expressed by this rule is sequential, in that only one running task can be
performed at a time, all others are in a state suspended or ready. A task becomes running as a result of
performing a schedule action. It is selected from a queue of ready tasks ordered by priorities. Agents can
change the behavior of the environment by service requests. The interaction between the environment
and the agents is defined by an insertion function, which computes the new behavior of the environment
with inserted agents.

The part of the description of requirements specific to sequential environments is the definition of the
interaction of agents and environments, where this interaction is described by the insertion function. The
most straightforward way to define this function is through interactive requirements: an action is allowed
to be processed if and only if the current state of the environment matches one of the preconditions for
service requests. This is denoted as E-(act)->E’ intuitively meaning that the environment E allows
the action act and if it will be processed then the environment will be equal to E ′.

The agent (composition of all agents) interacting with the environment requests the service act if and
only if it transits from its current state u into state u′ with action act.u-(act)->u’.

The composition of environment and the agent is noted as env(E,u). To define the transition of
env(E,u) we use interactive rules (Code 6):

Code 6

req ActivateInteract1:
Forall (E: env, E’:env, u:agent, u’:agent, a:name)(
((E-(Activate a)->E’) & (u-(Activate a)->u’))
->
(env(E,u) -(Activate a)-> env(E’, (Schedule;u’))));

req ActivateInteract2:
Forall (E: env, E’:env, u:agent, u’:agent, a:name)(
(˜(E -(Activate a)-> E’) & (u-(Activate a)->u’))
->
((E’.error = 1) & env(E,u) -(Activate a)-> env(E’, bot))));

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 35 — #35

System Validation 6-35

Intuitively, this rule means that when the environment allows the action Activate a and the agent
requests the action Activate a, then the composition of agent and environment env(E,u) trans-
itions to the state env(E,(Schedule;u’))with the action Activate a’, then at the next step the
environment will be equal to E ′ and the current agent will be (Schedule;u’).

6.4.5.1 Requirements for Sequential Environments

This class of models includes such products as single processor operating systems and single client devices.
The definitive characteristic of such systems is that at any moment of time only one service request can
be processed by the environment. Agents request services from the environment; they are defined by their
behavior. The only way of interaction between the environment and the agents is to interact through
service requests. It determines the level of abstraction that we use in the formal definition of the behavior
of agents.

The insertion functions used for the description of sequential systems is broader than the insertion
functions discussed earlier. An inserted agent can start its activity before agents inserted earlier terminate.
The active agent can be selected by the environment using various criteria such as priority or other static or
dynamic characteristics. To compare agent behaviors, in some cases a look-ahead insertion may be used.

Usually, sequential environments are deterministic systems and static requirements should be consistent
to define deterministic transitions. Consistency requirements reduce to the following condition: the
preconditions for each pair of static requirements referring to the same action must be nonintersecting.
In other words, for arbitrary values of attributes there must be at least one of two requirements which
has a false precondition. Completeness can also be checked for the set of all static requirements that refer
to the same action. Every such set of requirements must satisfy the condition that for arbitrary values of
attributes there must be at least one among the requirements that is applicable with a true precondition.

6.4.5.2 Requirements for Parallel Environments

A parallel environment is an environment with inserted agents that work in parallel and independently.
Agents are considered as transition systems. An agent can transition from one state to another by per-
forming an action at any time when the environment accepts this action. Once the agent has completed
the action, it transitions into a new state and, in addition, causes a transition of the environment.

As an example, consider the modeling of device interaction protocols. Devices are independent and
connected through the environment. They interact by sending and receiving of data packets. The protocol
is considered as an algorithm used by devices to interact with other components.

Such a device is an agent in the parallel environment. It is represented as a transition system that can
cause transition between states by one of the two actions: sending or receiving a packet that is a parameter
of these actions. We formalize such requirements by using the notation of Hoare-style triples.

Asynchronous parallel environments are highly nondeterministic. Such specifications are easily
expressed in sequence diagrams or message sequence charts, as shown in Figure 6.5. The precondi-
tions and postconditions are conditions and states on the message sequence diagram, while the actions
represent the message arrows and tasks shown on the diagrams.

6.4.5.3 Requirements for Synchronous Agents

As an example of a synchronous system, consider a processor with a bus and its time-dependent behavior.
The processor interacts with the bus through signals which appear at every bus cycle (discrete time step).
Interaction protocols in the processor-bus system are defined by signal behavior. Every signal can have a
value of either 0 or 1. After some event, every signal switches to one of these values. For every signal of the
system there is a history describing the conditions of signal switching. Such conditions are called assertion
condition (when the signal switches to 1) and deassertion condition (when the signal switches to 0).

Formally, the history of signals is a sequence of conjunctions of signals. The situation when signal S1 is
equal to 1, signal S2 is equal to 0 in moment tn and signal S1 is equal to 0, signal S2 is equal to 1 in moment
tn+1 can be described in the following way:

(S1& ∼ S2) ∗ (∼ S1& S2)

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 36 — #36

6-36 Embedded Systems Handbook

DAPACGCCCH(k) SDGC_Call(i, Group_ID)

SDGC_Complete

(MS_ID, Group_Id=0,)

SDGC_Page_Response_Type_1

(ms_id,)
i id NOT EXI TING

SDGC_Complete

SDGC_Page_Response_Type_1

(ms_id,)

SDGC_Complete

(MS_ID, Group_Id=0,)

SDGC_Page_Response_Type_1

(ms_id,)

SDGC_Page_Request

(Group_ID, LAI,)

SDGC_Page_Request_Type_1

(ms_id=2)

SDGC_Page_Request_Type_1

(ms_id=3)

SDGC_Page_Request_Type_1

(ms_id=1)

SDGC_Paging_Request

(List_Of_Targets)

(MS_ID, Group_Id=0,)

FIGURE 6.5 Sample MSC diagram.

Let signal S3 have as assertion condition that it will be equal to 1 after the above history of signals S1 and
S2. This fact can be described as

(S1& ∼ S2) ∗ (∼ S1& S2)− > after(1) S3

using triples notation. This condition can be reflected on a wave (or timing) diagram (Figure 6.6).
The consistency condition is fulfilled if signal q will not be changed into 1 and 0 in the same cycle. In

other words, if there are two requirements P → q and P ′ → ∼q, then preconditions P and P ′cannot be
true simultaneously.

Static requirements for synchronous systems can use Kleene expressions over conditions and duration
functions with numeric inequalities in preconditions. These requirements are converted into standard
form with logic statements relating to adjacent time intervals.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 37 — #37

System Validation 6-37

S1

S2

S3

t1 t2 t3

FIGURE 6.6 Sample wave diagram.

6.4.6 Reasoning about Embedded Systems

The theory of agents and environments has been implemented in the system 3CR [104]. The kernel of
our system [105] consists of a simulator for a generic Action Language (AL) [10,11] for the description of
system behaviors, of services for automatic exploration of the behavior tree of a system, and of a theorem
prover for first-order predicate logic, enriched with a theory of linear equations and inequalities. It provides
the following technologies supporting the development, verification, and validation of requirements for
embedded systems:

• Prove the internal consistency and completeness of static requirements of a system.
• Prove dynamic properties of the system defined by static requirements including safety, liveness,

and integrity conditions.
• Translate systems described in standard engineering languages (e.g., MSC, SDL, or wave

diagrams) into the first-order format described earlier and simulate these models in user-defined
environments.

• Generate test suites for a system defined by verified requirements specifications and validate the
implementations of the system against these test cases.

These facilities can be used in automated as well as in interactive mode. To determine consistency and
completeness of requirements for interactive systems we rely on the theory of interaction of agents and
environments as the underlying formal machinery.

6.4.6.1 Algebraic Programming

The mathematical models described in Section 6.2 can be made more concrete by imposing structure on
the state space of transition systems. An universal approach is to consider an algebraic structure of the set
of states of a system. Then states are represented by algebraic expressions and transitions can conveniently
be defined by (conditional) rewriting rules. A combination of conditional rewriting rules with congruence
on the set of algebraic expressions can be defined in terms of rewriting logic [32].

Most modern rewriting techniques are considered primarily in the context of equational theories
but could also be applied to first-order or higher-order clausal or nonclausal theorem proving. The
main disadvantage of computations with such systems is their relatively weak performance. For instance,
rewriting modulo associativity and commutativity (AC-matching) is NP-complete. Consequentially, these
systems are usually not powerful enough when “real-life” problems are considered.

Our environment [105] supports reasoning in noncanonical rewriting systems. It is possible to combine
arbitrary systems of rewriting rules with different rewrite strategies. The equivalence relation (basic
congruence) on a set of algebraic expressions is introduced by means of interpreters for operations

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 38 — #38

6-38 Embedded Systems Handbook

which define a canonical form. The primary strategy of rewriting is a one-step syntactic rewriting with
postcanonization by means of reducing the rewritten node to this canonical form. All other strategies are
combinations of the primary strategy with different traversals of the tree representing a term structure.
Rewrite strategies can be chosen from the library of strategies or written as procedures or functions.

The generic AL [11,106] is used for the syntactical representation of agents as programs and is based
on the behavior algebra defined in Section 6.2. The main syntactic constructs of AL are prefixing, non-
deterministic choice, sequential composition, and parallel composition. Actions and procedure calls are
primitive statements. It provides the standard termination constants (successful termination, divergence,
deadlock). The semantics of this language is parameterized by an intensional semantics defined through
an unfolding function for procedure calls and an interaction semantics defined by the insertion function
of an environment into which the program will be inserted. The intensional semantics and the interaction
semantics are defined as systems of rewriting rules.

The intensional semantics of an AL program is an agent which is obtained by unfolding procedure calls
in the program and defining transitions on a set of program states. It is defined independently of the
environment by means of rewriting rules for the unfolding function (unfolding rules) up to bisimulation.
The left-hand side of an unfolding rule is an expression representing a procedure call. The right-hand side
of an unfolding rule is an AL program which may be unfolded further generating more and more exact
approximations of the behavior under recursive computation.

The only built-in compositions of AL are prefixing and nondeterministic choice. The unfolding of
parallel and sequential compositions are flexible and can be adjusted by the user. Alternatives for parallel
composition are defined by the choice of the combination operator. For example, when the combination
of arbitrary actions is the impossible action, parallel composition is reduced to interleaving. On the other
hand, exclusion of interleaving from the unfolding rules defines parallel composition as synchronization
at each step (similar to hand shaking in Milner’s π-calculus).

The interaction semantics of AL programs is defined through the insertion function. Programs are
considered up to insertion equivalence. Rewriting rules which define the insertion function (insertion
rules) have the following structure: the left-hand side of an insertion rule is the state or behavior of the
environment with a sequence of agents inserted into this environment (represented as AL programs). The
right-hand side is a program in AL augmented by “calls” to the insertion function denoted as env(E , u),
where E is an environment state expression and u is an AL program. To compute the interaction semantics
of AL program one uses both the unfolding rules for procedure calls and the insertion rules to unfold calls
to the insertion function.

In this approach, the environment is considered as a semantic notion and is not explicitly included
in the agent. Instead, the meaning of an agent is defined as a transformation of an environment which
corresponds to inserting the agent into its environment. When the agent is inserted into the environment,
the environment changes and this change is considered to be a property of the agent described.

6.4.6.2 Simulating of Transition Systems

The AL has been implemented by means of a simulator [10,106,107], an interactive program which
generates all histories of an environment with inserted agents and which can explore the behavior of
this environment step-by-step, starting from any possible initial state, with branching at nondetermin-
istic points and backtracking to previous states. The simulator permits forward and backward moves
along histories; in automatic mode it can search for states satisfying predefined properties (deadlock,
successful termination, etc.) or properties defined by the user. The generation of histories may be user
guided and thus permits examination of different histories. The user can retrieve information about the
current state of a system and change this state by means of inserting new agents using different insertion
functions.

Arbitrary data structures can be used for the representation of the states of an environment and the
environment actions. The set of states of an environment is closed under the insertion function e[u]
which is denoted in the simulator as env(e, u). The agent u is represented by an AL expression. Arbitrary
algebraic data structures can be used for the representation of agent actions and procedure calls.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 39 — #39

System Validation 6-39

The core of the simulator is specified as a nondeterministic transition system that functions as an
environment for the system model. Actions of the simulating environment are expressed by means of calls
for services of the simulator. Local services define one-step transition of the simulated system. Global
services permit the user to compute different properties of the behavior of a simulated system. The user
can formulate the property of a state by means of a rewriting rule system or some other predicate function
and the simulator will search for the existence of a state satisfying the property among the states reachable
from the current state. Examples of such properties are deadlock, successful termination, undefined states,
and so on.

6.4.6.3 Theorem Proving

The proof system [108] is based on the interactive evidence algorithm [109–111] — a Gentzen-style
calculus with unification used for first-order reasoning.

The Interactive Evidence Algorithm is a sequent calculus and relies on the construction of an auxiliary
goal as the main inference step which allows easy control of the direction of the search for proofs at each
step through the choice of auxiliary goals. This algorithm can be represented as a combination of two
calculi: inference in the calculus of auxiliary goals is used as a single-step inference in the calculus of
conditional sequents. In a sense, the interactive evidence algorithm generalizes logic programming in that
for the latter, auxiliary goals are extracted from Horn disjuncts while in the interactive evidence algorithm
they are extracted from arbitrary formulae with quantifiers (which need not be skolemized).

The interactive evidence algorithm is implemented as a nondeterministic algebraic program extracted
from the calculus based on the simulator for AL. This program is inserted as an agent into a control
environment which searches for a proof, organizes interaction with the user and the knowledge bases,
and implements strategies and heuristics to speed up the proof search. The control environment contains
the assumptions of a conditional sequent, and so the local information can be combined with other
information taken from knowledge base agents and used in search strategies.

The prover is invoked by the function prove implemented as a simple recursive procedure with
backtracking which takes an initial conditional sequent as argument and searches for a path from the
initial statement to axioms, and this path is converted to a proof. The inference search is nondeterministic
owing to disjunction rules.

Predicates are considered up to equivalence defined by means of all Boolean equations except dis-
tributivity. A function Can defined by means of a system of rewriting rules defines the reduction of
predicate formulae as well as propositional formulae to a normal form. Predicate formulae are considered
up to renaming of bound variables and equations ¬(∃x)p = (∀x)¬p, ¬(∀x)p = (∃x)¬p. Associativity,
commutativity, and idempotence of conjunction and disjunction as well as the laws of contradiction,
excluded middle, and the laws for propositional constants are used implicitly in these equations.

6.4.7 Consistency and Completeness

The notion of consistency of requirements in general is equivalent to the existence of an implementation
or model of a system that satisfies these requirements. Completeness means that this model is unique
up to some predefined equivalence. The traditional way of proving consistency is to develop a model
coded in some programming or simulation language and to prove that this code is correct with respect to
requirements. However, direct proving of correctness is difficult because it demands computing necessary
invariant conditions for the states of a program. Another method is generating the space of all possible
states of a system reachable from the initial states and checking whether the dynamic requirements are
satisfied in each state. This approach is known as model checking and many systems which support model
checking have been developed. Unfortunately, model checking is realistic only if the state space is finite,
and all reachable states can be generated in a reasonable amount of time.

Our approach proves consistency and completeness of requirements directly, without developing a
model or implementation of the system. We prove that the static requirements define the system com-
pletely and that dynamic properties of consistent requirements are all the logical consequences of static

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 40 — #40

6-40 Embedded Systems Handbook

requirements. Based on this assumption, one can define an executable specification using only static
requirements and then execute it using a simulator.

We distinguish between the consistency and completeness of static requirements and dynamic con-
sistency. The first is defined in terms of static requirements only and reflects the property of a system
to be deterministic to actions by the environment. For example, a query from a client to a server as the
action of an inserted agent can be selected nondeterministically, but the response must be defined by static
requirements selected in a deterministic manner. When all dynamic requirements are the consequences
of static requirements, we say the system is dynamically consistent.

Sufficient conditions for the consistency of static requirements depend on subject domains and implicit
assumptions about the change of observable attributes. For example, for the classes of asynchronous
systems considered previously, the condition for internal consistency is simply that the conjunction of two
preconditions corresponding to different rules with the same action is not satisfiable. Completeness means
that the disjunction of all preconditions for all rules corresponding to the same action is generally valid.
For synchronous systems, on the other hand, it is the nonsatisfiability of two preconditions corresponding
to rules which define conflicting changes to the same (usually binary) attribute. The incompleteness of
static requirements usually is not harmful, it merely postpones design decisions to the implementation
stage. However, it is harmful if there exists an implementation which meets the static requirements but
does not meet the dynamic requirements.

Dynamic consistency of requirements (the invariance of dynamic conditions expressed using the tem-
poral modality “always”) can be proven inductively using the structure of static requirements. Consistency
checking proceeds by formulating and proving consistency conditions for every pair of static requirements
with the same starting event. Every such pair of requirements must satisfy the condition that for arbitrary
values of attributes there must be at least one of the two requirements which has a false precondition or
the postconditions are equivalent.

Completeness of requirements means that there exists exactly one model for the requirements up to
some equivalence. We distinguish two main cases depending on the focus of the requirements specification.
If the specification defines the environment, the equivalence of environments needs to be considered.
Otherwise, if an agent is defined by the requirements, the equivalence of agents needs to be examined.

Let e and e ′ be two environment states (of the same or different environments). We say that e and e ′
are equivalent if for an arbitrary agent u the states e[u] and e ′[u] are bisimilar (from the equivalence of
two environment states it follows that for insertion equivalent agents u and u′, e[u] and e ′[u′] are also
bisimilar). If there are restrictions on possible behaviors of the agents, we consider admissible agents
rather than arbitrary agents.

Let E and E ′ be two environments (each being a set of environment states and an insertion function).
These environments are equivalent if each state of one of the environments is equivalent to some state of
the other.

If the set of environments defines an agent for a given environment E , logical completeness (with
respect to agent definition) means that all agents satisfying these requirements are insertion equivalent
with respect to the environment E , that is, if u and u′ satisfy the requirements, then for all e ∈ E ,
e[u] ∼E e[u′].

We check completeness for the set of all static requirements that refer to the same starting event. Every
such set of requirements must satisfy the condition that for arbitrary values of attributes there must be at
least one among the requirements that is applicable with a true precondition.

6.5 Examples and Results

Figure 6.7 exhibits a design process using the 3CR [104] tool set. The requirements for a system are
represented as input text written in the formal requirements language or translated from engineering
notations, such as SDL or MSC. Static requirements are sent to the checker which establishes their
consistency and completeness. The checker analyzes a requirement statement and generates a logical

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 41 — #41

System Validation 6-41

Behavior
model

 CheckerStatic
requirements

Prover

Generate
executablespec

Simulator

Generate tests

Validate
Structure
model

Dynamic
requirements

Environment
model

FIGURE 6.7 Design process.

statement expressing the consistency of the given requirement with other requirements already accepted,
as well as a statement expressing completeness after all static requirements have been accepted. Then this
statement is submitted to the prover in order to search for a proof. The prover may return one of three
answers: proved, not proved, or unknown. In the case where consistency could not be proven, one of the
following types of inconsistencies is considered.

• Inconsistent formalization. This type of inconsistency can be eliminated through improved formal-
ization, if the postconditions are consistent for the states where all preconditions are true. Splitting
the requirements can help.

• Inconsistency resulting from incompleteness. This is the case when two requirements are consist-
ent, but nonintersection of preconditions cannot be proved because complete knowledge of the
subject domain is not available. A discussion with experts or the authors of the requirements is
recommended.

• Inconsistency. Preconditions are intersected, but postconditions are inconsistent after performing
an action. This is a sign of a possible error, which can be corrected only by the change of require-
ments. If the intersection is not reachable, the inconsistency will not actually arise. In this case,
a dynamic property can be formulated and proven.

Dynamic properties are checked after accepting all static requirements. These are logical statements
expressing properties of a system in terms of first-order predicate calculus, extended by temporal modal-
ities, as well as higher-order functions and types. If an inductive proof is needed, all static requirements
are used for generating lemmas to prove the inductive step.

After checking the consistency and completeness of static requirements, the requirements are used for
the automatic generation of an executable specification of a system satisfying the static requirements. At
this point, the dynamic requirements have already been proven to be consequences of static requirements,
so the system also satisfies the dynamic requirements. The next step of system design would be the use of

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 42 — #42

6-42 Embedded Systems Handbook

the obtained information in the next stages of development. For example, executable specifications can
be used for generating complete test cases for system test.

6.5.1 Example: Embedded Operating System

In this section, we shall describe a general model which could be used for developing formal requirements
for embedded operating systems such as OSEK [103].

The requirements for the OSEK operating system can serve as an example of the application of the gen-
eral methodology of checking consistency. These requirements comprise two documents: OSEK Concept
and OSEK API. The first document contains an informal description of conformance classes (BCC1,
BCC2, ECC1, ECC2, ECC3) and requirements of the main services of the system. The second document
refines the requirements in terms of C function headers and types of service calls.

Two kinds of requirements can be distinguished in these documents. Static requirements define per-
manent properties of the operating system, which must be true for arbitrary states and any single-step
transition. These requirements refer to the structure of operating system states and their changes in
response to the performance of services. Dynamic requirements state global system properties such as the
absence of deadlocks or priority inversions.

Using the theory of interaction of agents and environments as the formalism for the description
of OSEK, an environment consists of a processor (or processor network), an operating system, and
the external world which interacts with the environment via some kind of communication network;
agents are tasks interacting with the operating system and communication network via services. We use
nondeterministic agents over a set of actions representing operating system services as models of tasks. The
states of the environment are characterized by a set of observable attributes with actions corresponding
to the actions of task agents.

Each attribute defines a partial function from the set E of environment states to the set of val-
ues D. E is considered as an algebra with the set of (internal or external) operations defined on it.
The domain D should be defined as abstract as possible, for example, by means of set theoretic construc-
tions (functions, relations, powersets) over abstract data types represented as initial algebras, in order to
be independent as much as possible of the details of implementation when formulating the requirements
specifications.

In monoprocessor systems only one agent is in the active state, that is capturing a processor resource.
If e is a state of the environment with no active agents then in the representation e[u] of the environment
the state u is a state of an active agent. All other agents are in nonactive states (suspended and ready states
for OSEK) and are included into the state e as parts of the values of attributes.

The properties of an environment can be divided into static and dynamic properties. Static properties
define one-step transitions of a system; dynamic properties define the properties of the total system. The
general form of a rule for transitions is:

e
c−→ e ′, u

a−→ u′

e[u] d−→ e ′′[u′′]

In this rule d , e ′′, and u′′ depend on parameters appearing in the assumptions. Usually, if a = c = d
(synchronization), e ′′ = e ′, and u′′ = u′, albeit there can be special cases such as hiding, scheduling
points, or interrupt routines.

To define the properties of a transition e
c−→ e ′ for the environment we first define the transition rules

for the attributes associating a transition system to each attribute. The states of a system associated to the
attribute p is a pair p : v where v is a value of a type associated with the attribute p. All transition systems
are defined jointly, that is the transitions of one attribute can depend on the current values or transitions
of other ones. After defining the transitions for attributes the transitions for environment states must be

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 43 — #43

System Validation 6-43

defined in such a way that the following general rule should be true:

Let p1, . . . , pn be attributes of a state e of the environment and e · p1 = v1, . . . , e · pn = vn . Let e
c−→ e ′,

e ′ is not a terminal state (�,⊥, or 0), and pi : vi
c−→ pi : v ′i for all i ∈ I ⊆ [1 : n] where I is the set of all

indices for which such transitions defined. Then e ′ · pi = v ′i for i ∈ I and e ′ · pi = e · pi for i /∈ I . From

this definition it follows that if I = ∅ and e
c−→ e ′ then e ′ · pi = e · pi for all i ∈ I ⊆ [1 : n].

In the case, when two states of the environment are bisimilar, this rule is sufficient to define the
transitions of the environment. Otherwise we can introduce the hidden part of the environment state and
consider transitions of attributes jointly with this hidden component.

For space considerations, in Section 6.5.1.1 we show only the example of a simple scheduler applicable
to this class of operating systems.

6.5.1.1 Requirements Specification for a Simple Scheduler

This example of a simplified operating system providing initial loading and scheduling for tasks and
interrupt processing is used as a benchmark to demonstrate the approach for formalizing and checking
the consistency of requirements. We use the terminology of OSEK [103].

The attributes of the scheduler are:

• Active, a name
• Priority, a partial function from names to natural numbers
• Ready, a list of name/agent pairs
• Call, a partial function from names to agents

The empty list and the everywhere undefined function are denoted as Nil. These attributes are defined
only for nonterminal and deterministic states. The actions of task agents are calls for services:

• new_task (a, i), a is a name of an agent, i is an integer
• activate a, a is a name
• terminate
• schedule

In the following requirements we assume that the current state of the environment is e[u] and that

u
c−→ u′ for a given service c . The values of attributes are their values in a state e. We define the transitions

e[u] d−→ e ′′[u′′].
The actions of environment include all task actions and, in addition, the following actions which are

specific only for the environment and are addressed to an external observer of scheduler activity:

• loaded a, a is a name
• activated a, a is a name
• activate_error
• schedule_error
• terminated a, a is a name
• schedule u, u is an agent
• scheduled a, a is a name
• wait
• start_interrupt
• end_interrupt

6.5.1.1.1 Requirements for new_task
This action substitutes the old task with the same name if it was previously defined in the scheduler or
adds the task to an environment as a new task otherwise. Transitions for the attributes:

priority : f
new_task(a:v ,i)−−−−−−−−−→ priority : f [a := i]

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 44 — #44

6-44 Embedded Systems Handbook

We use the following notation for the redefinition of functions: if f : X → Y and x ∈ X then f [x := y] is
a new function g such that g (x) = y and g (x ′) = f (x ′) for x �= x ′ (assignment for functions). If x /∈ X it
is added to the domain of a function and then an assignment is performed.

call : f
new_task (a:v ,i)−−−−−−−−−−−−→ f [a := v]

Now the task agent v becomes the initial state of a task named a. new_task is defined by the
following rule:

e
new_task (a:v ,i)−−−−−−−−−−−−→ e ′, u

new_task (a:v ,i)−−−−−−−−−−−−→ u′

e[u] loaded a−−−−−−−→ e ′[u′]
6.5.1.1.2 Requirements for activate
We use the following notation: if p is an attribute, its value is a function and x is in the domain of this
function, then p(x) denotes the current value of this function on x .

call a = v

ready : r
activate a−−−−−−−−−→ ready : ord(a : v , r)

The function ord is defined on the set of lists of pairs (a : u) where a is a name and u is an agent and this
function must satisfy the following system of axioms where all parameters are assumed to be universally
quantified:

ord(a : �, r) = r

priority b ≤ priority a ⇒ ord(a : u, b : v , r) = (b : v ,ord(a : u, r))

Hence ready is a queue of task agents ordered by priorities and adding a pair (a : u) put this pair as the
last one among all pairs of the same priority as a. The rules are:

e
activate a−−−−−−−−−→ e ′, u

activate a−−−−−−−−−→ u′, a ∈ Dom(call)

e[u] activated a−−−−−−−−−−−→ e ′[u′]

u
activate a−−−−−−−−−→ u′, a /∈ Dom(call)

e[u] activate_error−−−−−−−−−−−−−−−→ ⊥
−

An undefined state of the environment only means that a decision about the behavior of the environment
in this case is left for the implementation stage. For instance, the definition can be extended so that the
environment sends an error message and calls error processing programs or continuous its functioning
ignoring the incorrect action.

6.5.1.1.3 Requirements for Terminate

u
terminate−−−−−−−−−→ u′

e[u] activated (e.active)−−−−−−−−−−−−−−−→ e[schedule]
6.5.1.1.4 Requirements for Schedule
Let P(u, b, v , s) = P1 ∨ P2 where

P1 = e.active �= Nil ∧ ord(e.active : u, e.ready) = (b : v , s)

P2 = e.active = Nil ∧ u = � ∧ e.ready = (b : v , s)

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 45 — #45

System Validation 6-45

Let r = e.ready , and a = e.active , then the rules for attributes are:

P(u, b, v , s)

ready : r
schedule u−−−−−−−−−−→ ready : s

P(u, b, v , s)

active : a
schedule u−−−−−−−−−−→ active : b

Note that, transitions for attributes and therefore for the environment are highly nondeterministic because
the parameter u is an arbitrary agent behavior. But this nondeterminism disappears in the rule for
scheduling which restricts the possible values for u to no more than one value. The rules are:

P(u′, b, v , s), e
schedule u′−−−−−−−−−−→ e ′, u

schedule−−−−−−−−→ u′

e[u] scheduled b−−−−−−−−−−−→ e ′[v]
u
schedule−−−−−−−−→ u′, e.active = Nil ∧ u′ �= �

e[u] schedule_error−−−−−−−−−−−−−−−→ ⊥

u
schedule−−−−−−−−→ �, e.ready = Nil

e[u] wait−−−−→ e ′[�]

Therefore, if a task has no name (it can happen if a task is initially inserted into an environment) it can
use scheduling only as the last action, otherwise it is an error. And if there is nothing to schedule, the
scheduling action is ignored.

6.5.1.1.5 Interrupts
The simplest way to introduce interrupts to our model is to hide the occurrence of interrupts and the
choice of the start of interrupt processing. Only actions which show the start and the end of interrupt
processing are observable. The rules are:

e
start_interrupt−−−−−−−−−−−−−−−−→ e ′[v]

e
start_interrupt−−−−−−−−−−−−−−−−→ e ′[v ;end_interrupt ; u]

We have no transitions for attributes labeled by the interrupt action so in this transition e and e ′ have the
same values for all attributes. The program v is an interrupt processing routine.

u
end_interrupt−−−−−−−−−−−−−−→ u′

e[u] end_interrupt−−−−−−−−−−−−−−→ e[u′]

Nesting of interrupts can be of arbitrary depth. The action end_interrupt is an environment action
but it is used by the inserted agent after interrupt started to show the end of interrupt processing. Therefore,
the set of actions for inserted agent is extended, but still it is not an action of an agent before its insertion
into the environment.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 46 — #46

6-46 Embedded Systems Handbook

6.5.1.1.6 Termination
When all tasks are successfully terminated, the scheduler reaches the waiting state:

active : a
wait−−−−→ active : Nil

ready : Nil , e
wait−−−−→ e ′

e[�] wait−−−−→ e ′[�]
6.5.1.1.7 Dynamic Requirements
A state e of an environment is called initial if e.ready = e.active = Nil , and the domains of
functions e.priority and e.call are empty. Let E0 be the set of all states reachable from the initial
states. Define En+1, n = 0, 1, . . . as a set of all states reachable from the states e[u], where e ∈ En and u is
an arbitrary task agent. The set E of admissible states is defined as a union E = E0 ∪ E1 ∪ Multiple
insertion rules show that the insertion function is sequential. Dynamic requirements for environment
states are as follows:

• E does not contain the deadlock state 0.
• There are no undefined states in E except for those which result from error actions.
• Tasks are scheduled in FIFO discipline for the tasks of the same priority, tasks of a higher priority

are scheduled first and interrupt actions are nested as brackets.

6.5.1.1.8 Consistency
The only nonconstructive transition in the requirements specification of the simple scheduler is the inser-
tion of an arbitrary agent as an interrupt processing routine. If we restrict the corresponding transitions
to the selection from some finite set (even nondeterministically) the requirements will be executable.

To prove dynamic properties, first some invariant properties for E (always statements) must be proved.
Then after their formalization, dynamic properties are inferred from these invariants:

• Dom(e.priority) = Dom(e.call)
• (a : u) ∈ e.ready ⇒ a ∈ Dom(e.priority)
• e.active �= Nil ⇒ e.active ∈ Dom(e.priority)
• e.ready is ordered by priority

In the invariants formulated above, e is assumed to be nonterminal.

6.5.1.2 Input Text to the Consistency Checker

The consistency checker accepts static requirements represented in the form of Hoare-style triples and
dynamic requirements in the form of logical formulae. Requirements include the description of typed
attributes and actions. The following input text is obtained from the description of simple scheduler
considered above. It is statically consistent and can be used for proving dynamic properties of the scheduler.
Each requirement describes the change of a state of environment with the inserted agent represented as the
value of the attribute active_task. The value of this attribute is the behavior of a previously inserted
agent which is currently active. The predicate active_task–>a · u is used to represent the transition

active_task
a−→ u. The action axiom is needed to prove consistency for action wait (Code 6.7).

Code 7

attributes(
active: name,
priority: name -> Nat,
ready: list of (name:agent),
call: name -> agent,

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 47 — #47

System Validation 6-47

active_task: agent
);
actions(a:name,u:agent,i:int)(

new_task(a:u,i),
activate a,
terminate,
schedule,
loaded a,
activated a,
activate_error,
schedule_error,
terminated a,
schedule u,
scheduled a,
wait,
start_interrupt,
end_interrupt

);

Let action axiom: Forall x(˜(x.Delta = Delta));
Let ord Delta: Forall(a,r)(ord(a:Delta,r) = r);
Let ord: Forall(a,b,u,v,r)(
(priority b <= priority a) & ˜(a = Delta)
-> (ord(a:u,b:v,r) = (b:v,ord(a:u,r))));

/* ------------ new_task ------------------------------ */
req new_task: Forall(a:name, (u,v):agent, i:int)(
(active_task --> new_task(a:v,i).u)
-> after(loaded a)
((active_task = u) & (priority a = i) & (call a = v)));

/* ------------ activate ------------------------------ */
req activate success: Forall(a:name,(u,v):agent, r:list of(name:agent))(
((active_task --> activate a.u) & (ready = r) &(call a = v)
& ˜(v = Nil))

-> after(activated a)
(active_task = u & ready = ord(a:v,r)));

req activate error: Forall(a:name,u:agent)(
((active_task --> activate a.u) & (call a = Nil))
-> after activate_error
bot);

/* ------------ terminate ----------------------------- */
req terminate: Forall(a:name, u:agent)(
((active_task --> terminate.u) & (active = a))
-> after(terminated a)
(active_task = schedule));

/* ------------ schedule ------------------------------ */
req schedule success active:
Forall((u,v):agent, a:name,s:list of(name:agent))(
((active_task --> schedule.u) & ˜(active = Nil) &
(ord(active:u,ready) = (a:v,s)))

-> after(scheduled a)
((active_task =u) & (active = a) & (ready = s)));

req schedule success not active:
Forall(v:agent, a:name,s:list of(name:agent))(
((active_task = schedule) & (active = Nil) & (ready = (a:v,s)))

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 48 — #48

6-48 Embedded Systems Handbook

-> after(scheduled a)
((active_task =v) & (active = a) & (ready = s)));

req schedule error: Forall(u:agent)(
((active_task --> schedule.u) & (active = Nil) & ˜(u = Delta))
-> after schedule_error
bot);

req schedule final: Forall(v:agent, b:name,s:list of(name:agent))(
((active_task --> schedule.Delta) & (ready = Nil))
-> after wait
(active_task = Delta));

/* ------------ interrupt ------------------------------ */
req start interrupt: Forall((u,v):agent)(
((active_task = u) & (interrup_process = v))
-> after start_interrupt
(active_task = (v;end_interrupt;u)));

req end interrupt: Forall(u:agent)(
(active_task --> end_interrupt.u)
-> after end_interrupt
(active_task = u));

/* ------------ termination --------------------------- */
req termination: Forall(u:agent)(
(active_task = Delta) & (ready = Nil)
-> after wait
(active_task = Delta))

/* ------------ dynamic properties -------------------- */
prove always Forall(a:name)(a in_set Dom(priority)<=>a in_set Dom(call);
prove always Forall(a:name,u:agent)(

(a:u)in_list(ready)-> a in_set Dom(priority));
prove always ˜(active = Nil)-> active in_set Dom(priority);
prove always is_ord ready

6.5.2 Experimental Results in Various Domains

We have developed specializations for the following subject domains: sequential asynchronous environ-
ments, parallel asynchronous environments, and sequential synchronous agents. We have conducted a
number of projects in each domain to determine the effectiveness of formal requirements verification.

Figure 6.8 exhibits the performance of our provers. We show the measurements in terms of MSC
diagrams, a familiar engineering notation often used to describe embedded systems. The chart on the left
shows performance in terms of “arrows,” that is, communications between instances on an MSC diagram.
We can see that the performance is roughly linear to the number of arrows up to roughly 800 arrows per
diagram. Note that, a typical diagram has much less arrows, no more than hundred in most cases. The
chart on the right shows that performance is linear in the number of MSC diagrams (of typical size).
Jointly, these charts indicate that the system is scalable to realistically sized applications.

6.5.2.1 OSEK

OSEK [103] is a representative example of an asynchronous sequential environment. The OSEK standard
defines an open, embedded operating system for automotive electronics.

The OSEK formal model has been described as an environment for application tasks of different types,
considered as agents inserted into this environment. The actions common for agents and environment
are the services of the operating system. The system is multitasking but has only one processor and only
one task is running at any given moment and, therefore, the system is considered to be sequential. The

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 49 — #49

System Validation 6-49

0.00

0.05

0.10

0.15

0.20

0.25

0 200 400 600 800 1000 1200
Arrows

P
ro

vi
ng

 ti
m

e
pe

r
ar

ro
w

 (
se

c)

(s
ec

)

0

200

400

600

800

25 50 75 100 125 150
MSC

FIGURE 6.8 Performer of prover in terms of MSC diagrams.

system is asynchronous because all actions performed by tasks independently of the operating system are
not observable and so the time between two services cannot be taken into account. Static requirements
are represented by transition rules with preconditions and postconditions. The reachable states for OSEK
can be characterized by integrity conditions.

After developing the formal requirements for OSEK, the proof system was used to prove static consist-
ency and completeness of the requirements. Several interesting dynamic properties of the requirements
were also proven. The formalization of OSEK requirements led to the discovery of 12 errors in the
nonformal OSEK standard. For example, Section 6.7.5 of the OSEK/VDX specification [103] defines a
transition related to the current priority of a task in the case when it has a priority less than the ceiling
priority of the resource; however, no transition is defined in the case when the current priority of the task
is equal to the ceiling priority.

All these errors were documented and the corrections have been integrated into the OSEK standard. In
the formal specification, we have covered 10 services defined by the OSEK standard and have proven the
consistency and completeness of this specification. This covers approximately 40% of the complete OSEK
standard. Moreover, we have found a number of mistakes in the other parts of the OSEK standard, which
prevented formalization of the rest of the standards document.

Consistency and completeness of the covered parts of the standard (49 requirements) were proven,
after making corrections for the above mentioned defects. The proof of consistency took approximately
7 min on a Pentium III computer with 256M of RAM running the Red Hat Linux Operating System.

6.5.2.2 RIO

The RapidIO Interconnect Protocol [112] is an example of a parallel asynchronous environment. This is
a protocol for a set of processor elements to communicate amongst each other. There are three layers of
abstraction developed: logic, transport, and physical layers.

The static requirements for RIO are standard (pre- and postconditions referring to the adjacent
moments of time). But while in OSEK an action is uniquely defined by a running task, in RIO it is
generated by a nondeterministic choice of one of the processor elements that generates an observable
action.

The formal requirements description of RIO for logic (14 requirements) and transport layers (6 require-
ments) was obtained from the documentation and proved to be consistent and complete (46 sec);
46 requirements for the physical layer have been proven consistent in 8.5 min.

6.5.2.3 V’ger

The formal requirements for the protocol used by the SC-V’ger processor [113] for communicating with
other processor elements of a system via the MAXbus bus device were extracted from the documentation
of the MAXbus and from discussions with experts. V’ger is a representative example of a synchronous

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 50 — #50

6-50 Embedded Systems Handbook

sequential agent inserted into a parallel environment. V’ger is a deterministic automaton with binary
input–output signals and shared data available from the bus. The attributes of the system are its input–
output signals and its shared data. Originally, there are no actions and we can consider the clock signal
synchronizing the system as the only observable action. Static requirements are written using asser-
tion/deassertion conditions for output signals. Each requirement is a rule for setting the signal to a given
value (0 or 1). The precondition is a history of conditions represented in a Klenee-like algebra with time.
Several rules can be applied at the same moment. For the static consistency conditions, the preconditions
of two rules which set the same attribute to different values can never be true at the same lock interval.
There are no static completeness conditions because we define the semantics of the requirements text so
that if there are no rules to change the output value, it remains in the same state as in the previous moment
of time. We use binary attribute symbols as predicates and as long as there are no other predicate symbols
the systems represents a propositional calculus.

To prove statements with Klenee algebra expressions, these must first be reduced to first-order logic, that
is, to requirements with preconditions referring to one moment of time (without histories). A converter
has been developed for the automatic translation of subject domains relying on Kleene algebra and the
interval calculus notation.

The set of reachable states of V’ger is not defined in first-order logic, and the proof of the consistency
condition is only a sufficient condition for consistency. A more powerful yet still sufficient condition is
the provability of consistency conditions by standard induction from static requirements. There exists a
sequence of increasingly powerful conditions which converge to the results obtained by model checking.
All 26 V’ger requirements have been proven to be consistent (192 sec).

6.6 Conclusions and Perspectives

In this chapter, we reviewed tools and methods to ensure that the “right” system is developed, by which
we mean a system that matches what the customer really wants. Systems that do not match customer
requirement result in cost overruns owing to later changes of the system at best, and, in the worst case,
may never be deployed. Based on the mathematical model of the theory of agents and interactions we
developed a set of tools capable of establishing the consistency and completeness of system requirements.
Roughly speaking, if the requirements are consistent, an implementation which meets the requirements is
possible; if the requirements are complete, this implementation is defined uniquely by the requirements.
We discuss how to represent requirements specifications for formal validation and exhibit experimental
results of deploying these tools to establish the correctness of embedded software systems. This chapter
also reviews other models of system behavior and other tools for system validation and verification.

Our experience has shown that dramatic quality improvements are possible through formal valida-
tion and verification of systems under development. In practice, deployment of these techniques will
require increased upstream development effort: thorough analysis of requirements and their capture in
specification languages result in a longer design phase. In addition, significant training and experience
are needed before significant benefits can be achieved. Nevertheless, the improvements in quality and
reduction in effort in later development phases warrant this investment, as application of these methods
in pilot projects has demonstrated.

References

[1] D. Harel and A. Pnueli. On the development of reactive systems. In K. Apt, Ed., Logics and Models
of Concurrent Systems. NATO ASI Series, vol. 13 Springer-Verlag, pp. 477–498.

[2] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems. Springer-Verlag,
Heidelberg, 1992.

[3] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety. Springer-Verlag,
Heidelberg, 1995.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 51 — #51

System Validation 6-51

[4] F.P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley, Reading,
MA, 1995.

[5] L. Lamport. Introduction to TLA. SRC Technical note 1994-001, 1994.
[6] R.J. van Glabbeek. Notes on the methodology of CCS and CSP. Theoretical Computer Science,

177: 329–349, 1997.
[7] D.M.R. Park. Concurrency and automata on infinite sequences. In Proceedings of the 5th GI

Conference. Lecture Notes in Computer Science, vol. 104. Springer-Verlag, Heidelberg, 1981.
[8] R. Milner. Communication and Concurrency. Prentice Hall, New York, 1989.
[9] J.V. Kapitonova and A.A. Letichevsky. On constructive mathematical descriptions of subject

domains. Cybernetics, 4: 408–418, 1988.
[10] A.A. Letichevsky and D.R. Gilbert. Towards an implementation theory of nondeterministic con-

current languages. Second Workshop of the INTAS-93-1702 Project: Efficient Symbolic Computing,
St Petersburg, October 1996.

[11] A.A. Letichevsky and D.R. Gilbert. A general theory of action languages. Cybernetics and System
Analysis, 1: 12–31, 1998.

[12] R. Milner. The polyadic π-calculus: a tutorial. In F.L. Bauer, W. Brauer, and H. Schwichtenberg,
Eds., Logic and Algebra of Specification. Springer-Verlag, Heidelberg, 1993, pp. 203–246.

[13] C.A.R. Hoare. Communicating Sequential Processes. Prentice Hall, New York, 1985.
[14] J.A. Bergstra and J.W. Klop. Process algebra for synchronous communication. Information and

Control, 60: 109–137, 1984.

AQ: Please
provide volume
number for
Ref. [15].

[15] L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages and
Systems, 872–923, 1994.

[16] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th Annual Symposium on the
Foundations of Computer Science, November 1977, pp. 46–52.

[17] E. Emerson and J. Halpern. Decision procedures and expressiveness in the temporal logic of
branching time. Journal of Computer and System Science, 30: 1–24, 1985.

[18] M.J. Fisher and R.E. Ladner. Propositional modal logic of programs. In Proceedings of the 9th
ACM Annual Symposium on Theory of Computing, pp. 286–294.

[19] E. Emerson. Temporal and modal logic. In J. van Leeuwen, Ed., Handbook of Theoretical Computer
Science. MIT Press, Cambridge, MA, 1991, pp. 997–1072.

[20] R. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions on
Computers, 35: 677–691.

[21] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic model checking: 10–20 states
and beyond. Information and Computation, 98: 142–170.

AQ: Please
provide the year
of publication
for Refs. [18, 21,
22, 27, 36 50
and 122].

[22] E. Clarke and E. Emerson. Synthesis of synchronization skeletons for branching time temporal
logic. In The Workshop on Logic of Programs. Lecture Notes in Computer Science, vol. 131. Springer-
Verlag, Heidelberg, pp. 128–143.

[23] J. Quielle and J. Sifakis. Specification and verification of concurrent systems in CESAR.
In Proceedings of the 5th International Symposium on Programming, pp. 142–158.

[24] L. Lamport. What good is temporal logic? In R. Mason,Ed., Information Processing-83: Proceedings
of the 9th IFIP World Computer Congress, Elsevier, 1983, pp. 657–668.

[25] M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming
Languages and Systems, 15: 73–132, 1993.

[26] W. Thomas. Automata on infinite objects. In J. van Leeuwen, Ed., Handbook of Theoretical
Computer Science. MIT Press, Cambridge, MA, 1991, pp. 131–191.

[27] A.P. Sistla, M. Vardi, and P. Wolper. The complementation problem for Büchi automata with
application to temporal logic. Theoretical Computer Science, 49: 217–237.

[28] M. Vardi and P. Wolper. An automata-theoretic approach to automatic program verification.
In Proceedings of the 1st IEEE Symposium on Logic in Computer Science, pp. 332–344.

[29] H. Rodgers. Theory of Recursive Functions and Effective Computability. McGraw-Hill, New York,
1967.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 52 — #52

6-52 Embedded Systems Handbook

[30] Y. Gurevich. Evolving algebras: an attempt to discover semantics. Current Trends in Theoretical
Computer Science, 266–292, 1993.

AQ: Please provide
the volume number
for Ref. [30].

[31] Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, Ed., Specification and Validation
Methods. University Press, 1995, pp. 9–36.

[32] J. Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96: 73–155, 1992.

[33] P. Lincoln, N. Marti-Oliet, and J. Meseguer. Specification, transformation and programming
of concurrent systems in rewriting logic. In G. Bleloch et al., Eds., Proceedings of the DIMACS
Workshop on Specification of Parallel Algorithms American Mathematical Society, Providence, 1994.

[34] M. Clavel. Reflection in General Logics and Rewriting Logic with Application to the Maude
Language. Ph.D. thesis, University of Navarra, 1998.

[35] M. Clavel and J. Meseguer. Axiomatizing reflective logics and languages. In G. Kicrales, Ed.,
Reflection’96. 1996, pp. 263–288.

[36] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, and J. Quesada. Towards
Maude 2.0. In F. Futatsugi, Ed., Proceedings of the 3rd International Workshop on Rewriting Logic
and its Applications. Notes in Theoretical Computer Science, vol. 36, Elsevier, 2000.

[37] J. Meseguer and P. Lincoln. Introduction in Maude. Technical report, SRI International, 1998.
[38] J. Brackett. Software Requirements. Technical report SEI-CM-19-1.2, Software Engineering

Institute, 1990.
[39] B. Boehm. Industrial software metrics top 10 list. IEEE Software, 4: 84–85, 1987.
[40] B. Boehm. Software Engineering Economics. Prentice Hall, New York, 1981.
[41] J.C. Kelly, S.S. Joseph, and H. Jonathan. An analysis of defect densities found during software

inspections. Journal of Systems Software, 17: 111–117, 1992.
[42] R. Lutz. Analyzing requirements errors in safety-critical embedded sytems. In IEEE International

Symposium Requirements Engineering, San Diego, 1993, pp. 126–133.
[43] T. DeMarco. Structured Analysis and System Specification. Yourdon Press, New York, 1979.
[44] C.V. Ramamoorthy, A. Prakash, W. Tsai, and Y. Usuda. Software engineering: problems and

perspectives. Computer, 17: 191–209, 1984.
[45] M.E. Fagan. Design and code inspections to reduce errors in program evelopment. IBM Systems

Journal, 15: 182–211, 1976.
[46] M.E. Fagan. Advances in software inspection. IEEE Transactions on Software Engineering,

12: 744–751, 1986.
[47] J. Rushby. Formal Methods and their Role in the Certification of Critical Systems. Technical

report CSL-95-1, March 1995.
[48] C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, New York, 1990.
[49] J.M. Spivey. Understanding Z: A Specification Language and its Formal Semantics. Cambridge

University Press, London, 1988.
[50] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University Press, London,

1996.
[51] International Organization for Standardization — Information Processing Systems — Open

Systems Interconnection. Lotos — A Formal Description Technique Based on the Temporal
Ordering of Observational Behavior. ISO Standard 8807. Geneva, 1988.

[52] R.S. Boyer and J.S. Moore. A Computational Logic Handbook. Academic Press, New York, 1988.
[53] M.J.C. Gordon and T.F. Melham, Eds., Introduction to HOL. Cambridge University Press, London,

1993.
[54] D. Craigen, S. Kromodimoeljo, I. Meisels, B. Pase, and M. Saaltink. EVES: an overview. In

VDM’91: Formal Software Development Methods. Lecture Notes in Computer Science, vol. 551.
Springer-Verlag, Heidelberg, 1991, pp. 389–405.

[55] M. Saaltink, S. Kromodimoeljo, B. Pase, D. Craigen, and I. Meisels. Data abstraction in EVES. In
Formal Methods Europe’93, Odense, April 1993.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 53 — #53

System Validation 6-53

[56] S. Owre, N. Shankar, and J.M. Rushby. User Guide for the PVS Specification and Verification
System. Technical report, SRI International, 1996.

[57] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, MA, 2000.
[58] P. Godefroid. VeriSoft: A tool for the automatic analysis of concurrent reactive software. In

Proceedings of the 9th Conference on Computer Aided Verification. Lecture Notes in Computer
Science, vol. 1254. Springer-Verlag, Heidelberg, 1997, pp. 476–479.

AQ: Please
provide the page
number for
Ref. [59].

[59] J. Burch, E. Clarke, D. Long, K. McMillan, and D. Dill. Symbolic model checking for sequential
circuit verification. IEEE Transactions on Computer-Aided Design, 13, 1994.

[60] G. Holzmann. The SPIN Model Checker, Primer and Reference Manual. Addison-Wesley, Reading,
MA, 2004.

[61] S.J. Garland and J.V. Guttag. A Guide to LP, the Larch Prover. Technical report, DEC Systems
Research Center Report 82, 1991.

[62] J. Crow, S. Owre, J. Rushby, N. Shankar, and M. Srivas. A tutorial introduction to PVS. In WIFT ’95:
Workshop on Industrial-Strength Formal Specification Techniques. Boca Raton, FL, April 1995.

[63] S. Rajan, N. Shankar, and M. Srivas. An integration of model checking with automated
proof checking. In Proceedings of the 7th International Conference on Computer Aided Verific-
ation — CAV ’95. Lecture Notes in Computer Science, vol. 939. Springer-Verlag, Heidelberg, 1995,
pp. 84–97.

[64] B. Berard, Ed., Systems and Software Verification: Model-Checking Techniques and Tools. Springer-
Verlag, Heidelberg, 2001.

[65] International Telecommunications Union. Recommendation Z.120 — Message Sequence Charts.
Geneva, 2000.

[66] Object Management Group. Unified Modeling Language Specification, 2.0. 2003.
[67] J. Hooman. Towards formal support for UML-based development of embedded systems.

In Proceedings of the 3rd PROGRESS Workshop on Embedded Systems, 2002, pp. 71–76.
[68] M. Bozga, J. Fernandez, L. Ghirvth, S. Graf, J.P. Krimm, L. Mounier, and J. Sifakis. IF: an

intermediate representation for SDL and its applications. In Proceedings of the 9th SDL Forum,
Montreal, June 1999.

[69] F. Regensburger and A. Barnard. Formal verification of SDL systems at the Siemens mobile phone
department. In Tools and Algorithms for the Construction and Analysis of Systems — ACAS’98.
Lecture Notes in Computer Science, vol. 1384. Springer-Verlag, Heidelberg, 1998, pp. 439–455.

[70] O. Shumsky and L. J. Henschen. Developing a framework for verification, simulation and testing
of SDL specifications. In M. Kaufmann and J.S. Moore, Eds., Proceedings of the ACL2 Workshop
2000, Austin, 2000.

[71] P. Baker, P. Bristow, C. Jervis, D. King, and B. Mitchell. Automatic generation of conformance
tests from message sequence charts. In Proceedings of the 3rd SAM (SDL And MSC) Workshop,
Telecommunication and Beyond, Aberystwyth. Lecture Notes in Computer Science, p. 2599, 2003.

[72] B. Mitchell, R. Thomson, and C. Jervis. Phase automaton for requirements scenarios. In Pro-
ceedings of the Feature Interactions in Telecommunications and Software Systems, vol. VII, 2003,
pp. 77–87.

[73] L. Philipson and L. Hogskola. Survey compares formal verification tools. EETIMES, 2001.
http://www.eetimes.com/story/OEG20011128S0037

[74] S. Yovine. Kronos: A verification tool for real-time systems. International Journal of Software Tools
for Technology Transfer, 1: 123–133, 1997.

[75] P. Pettersson and K. Larsen. UPPAAL2k. Bulletin of the European Association for Theoretical
Computer Science, 70: 40–44, 2000.

[76] D. Bjorner and C.B. Jones, Eds., The Vienna development method: the meta-language. In Logic
Programming. Lecture Notes in Computer Science, vol. 61. Springer-Verlag, Heidelberg, 1978.

[77] Y. Ledru and P.-Y. Schobbens. Applying VDM to large developments. ACM SIGSOFT Software
Engineering Notes, 15: 55–58, 1990.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 54 — #54

6-54 Embedded Systems Handbook

[78] A. Puccetti and J.Y. Tixadou. Application of VDM-SL to the development of the SPOT4 pro-
gramming messages generator. FM ’99: World Congress on Formal Methods, VDM Workshop,
Toulouse, 1999.

[79] J.C. Bicarregui and B. Ritchie. Reasoning about VDM developments using the VDM support tool
in Mural. In VDM 91: Formal Software Development Methods. Lecture Notes in Computer Science,
vol. 551. Springer-Verlag, Heidelberg, 1991, pp. 371–388.

[80] A. Diller. Z: An Introduction to Formal Methods. John Wiley & Sons, New York, 1990.
[81] W. Grieskamp, M. Heisel, and H. Dorr. Specifying embedded systems with statecharts and

Z: an agenda for cyclic software components. In Proceedings of the Formal Aspects of Soft-
ware Engineering — FASE ’98. Lecture Notes in Computer Science, vol. 1382. Springer-Verlag,
Heidelberg, 1998.

[82] D. Bert, S. Boulmé, M.-L. Potet, A. Requet, and L. Voisin. Adaptable translator of B specifications
to embedded C programs. In Formal Methods 2003. Lecture Notes in Computer Science, vol. 2805.
Springer-Verlag, Heidelberg, 2003, pp. 94–113.

[83] R. Milne. The Semantic Foundations of the RAISE Specification Language. RAISE report
REM/11, STC Technology, 1990.

[84] M. Nielsen, K. Havelund, K. Wagner, and C. George. The RAISE language, methods, and tools.
Formal Aspects of Computing, 1: 85–114, 1989.

[85] T. Mossakowski, Kolyang, and B. Krieg-Bruckner. Static semantic analysis and theorem proving
for CASL. In F. Parisi Presicce, Ed., Proceedings of the 12th Workshop on Algebraic Development
Techniques. Lecture Notes in Computer Science, vol. 1376. Springer-Verlag, Heidelberg, 1998,
pp. 333–348.

[86] P.D. Mosses. COFI: the common framework initiative for algebraic specification and develop-
ment. In TAPSOFT’97: Theory and Practice of Software Development. Lecture Notes in Computer
Science. vol. 1214. Springer-Verlag, Heidelberg, 1997, pp. 115–137.

[87] B. Krieg-Brückner, J. Peleska, E. Olderog, and A. Baer. The UniForM workbench, a universal devel-
opment environment for formal methods. In J. Wing, J. Woodcock, and J. Davies, Eds., FM’99,
Formal Methods. Lecture Notes in Computer Science, vol. 1709. Springer-Verlag, Heidelberg, 1999,
pp. 1186–1205.

[88] C.L. Heitmeyer, J. Kirby, and B. Labaw. Tools for formal specification, verification and valid-
ation of requirements. In Proceedings of the 12th Annual Conference on Computer Assurance,
Gaithersburg, June 1997.

AQ: Please provide
the age numbers for
Ref. [89].

[89] S. Easterbrook, R. Lutz, R. Covington, Y. Ampo, and D. Hamilton. Experiences using lightweight
formal methods for requirements modeling. IEEE Transactions on Software Engineering, 24, 1998.

[90] L.C. Paulson. Isabelle: A Generic Theorem Prover. Lecture Notes in Computer Science, vol. 828.
Springer-Verlag, Heidelberg, 1994, pp. 23–34.

[91] B.J. Krämer and N. Völker. a highly dependable computer architecture for safety-critical control
applications. Real-Time Systems Journal, 13: 237–251, 1997.

[92] D. Muthiayen. Real-Time Reactive System Development — A Formal Approach Based on UML
and PVS. Technical report, Concordia University, 2000.

[93] P.B. Jackson. The Nuprl Proof Development System, Reference Manual and User Guide. Cornell
University, Ithaca, NY, 1994.

[94] L. Cortes, P. Eles, and Z. Peng. Formal coverification of embedded systems using model checking.
In Proceedings of the 26th EUROMICRO Conference, Maastricht, September 2000, pp. 106–113.

[95] G. Holzmann. Design and Validation of Computer Protocols. Prentice Hall, New York, 1991.
[96] G. Holzmann. The model checker SPIN. IEEE Transactions on Software Enginering, 23: 3–20, 1997.
[97] R. Kurshan. Automata-Theoretic Verification of Coordinating Processes. Princeton University Press,

Princeton, NJ, 1993.
[98] R. de Simone and M. Lara de Souza. Using partial-order methods for the verification of beha-

vioural equivalences. In G. von Bochmann, R. Dssouli, and O. Rafiq, Eds., Formal Description
Techniques VIII, 1995.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 55 — #55

System Validation 6-55

[99] J. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier, and M. Sighireanu. CADP:
a protocol validation and verification toolbox. In Proceedings of the 8th Conference on Computer-
Aided Verification. New Brunswick, August 1996, pp. 437–440.

[100] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design aid. In IEEE
International Conference on Computer Design: VLSI in Computers and Processors. October 1992,
pp. 522–525.

[101] E. Astegiano and G. Reggio. Formalism and method. Theoretical Computer Science, 236:
3–34, 2000.

[102] Z. Chaochen, C.A.R. Hoare, and A.P. Ravn. A calculus of durations. Information Processing Letter,
40: 269–276, 1991.

[103] OSEK Group. OSEK/VDX. Operating System.Version 2.1. May 2000.
[104] S.N. Baranov, V. Kotlyarov, J. Kapitonova, A. Letichevsky, and V. Volkov. Requirement capturing

and 3CR approach. In Proceedings of the 26th International Computer Software and Applications
Conference, Oxford, 2002, pp. 279–283.

[105] J.V. Kapitonova, A.A. Letichevsky, and S.V. Konozenko. Computations in APS. Theoretical
Computer Science, 119: 145–171, 1993.

[106] D.R. Gilbert and A.A. Letichevsky. A universal interpreter for nondeterministic concurrent pro-
gramming languages. In M. Gabbrielli, Ed., Fifth Compulog Network Area Meeting on Language
Design and Semantic Analysis Methods, September 1996.

[107] T. Valkevych, D.R. Gilbert, and A.A. Letichevsky. A generic workbench for modelling the
behaviour of concurrent and probabilistic systems. In Workshop on Tool Support for System
Specification, Development and Verification, TOOLS98, Malente, June 1998.

[108] A.A. Letichevsky, J.V. Kapitonova, and V.A. Volkov. Deductive tools in algebraic programming
system. Cybernetics and System Analysis, 1: 12–27, 2000.

[109] A. Degtyarev, A. Lyaletski, and M. Morokhovets. Evidence algorithm and sequent logical inference
search. In H. Ganzinger, D. McAllester, and A. Voronkov, Eds., Logic for Programming and
Automated Reasoning (LPAR’99). Lecture Notes in Computer Science, vol. 1705. Springer-Verlag,
1999, pp. 44–61.

[110] V.M. Glushkov, J.V. Kapitonova, A.A. Letichevsky, K.P. Vershinin, and N.P. Malevanyi. Con-
struction of a practical formal language for mathematical theories. Cybernetics, 5: 730–739,
1972.

[111] V.M. Glushkov. On problems of automata theory and artificial intelligence. Cybernetics, 5: 3–13,
1970.

[112] Motorola. RIO Interconnect Globally Shared Memory Logical Specification. Motorola, 1999.
[113] Motorola. SC-V’ger Microprocessor Implementation Definition. Motorola, 1997.

AQ: Refs.
[114–151] have
not cited in text.

[114] S. Abramsky. A domain equation for bisimulation. Information and Computation, 92:
161–218, 1991.

[115] R. Alur and D. Dill. A theory of timed automata. Theoretical Computer Science, 126:
183–235, 1994.

[116] S.N. Baranov, C. Jervis, V. Kotlyarov, A. Letichevsky, and T. Weigert. Leveraging UML to deliver
correct telecom applications. In L. Lavagno, G. Martin, and B. Selic, Eds., UML for Real: Design
of Embedded Real-Time Systems. Kluwer Academic Publishers, Amsterdam, 2003.

[117] J. Bicarregui, T. Dimitrakos, B. Matthews, T. Maibaum, K. Lano, and B. Ritchie. The VDM+B
project: objectives and progress. In World Congress on Formal Methods in the Development of
Computing Systems. Toulouse, September 1999.

[118] G. Booch, J. Rumbaugh, and I. Jacobson. Unified Modeling Language User Guide. Addison-Wesley,
Reading, MA, 1997.

[119] S. Chandra, P. Godefroid, and C. Palm. Software model checking in practice: an industrial
case study. In Proceedings of the International Conference on Software Engineering, Orlando,
May 2002.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 56 — #56

6-56 Embedded Systems Handbook

[120] E. Clarke, I. Draghicescu, and R. Kurshan. A Unified Approach for Showing Language Con-
tainment and Equivalence between Various Types of Omega-Automata. Technical report,
Carnegie-Mellon University, 1989.

[121] F. Van Dewerker and S. Booth. Requirements Consistency — A Basis for Design Quality. Technical
report, Ascent Logic, 1998.

[122] E. Felt, G. York, R. Brayton, and A. Vincentelli. Dynamic variable reordering for BDD
minimization. In Proceedings of the EuroDAC, pp. 130–135.

[123] M. Fitting. A Kripke-Kleene semantics for logic programs. Journal of Logic Programming,
2: 295–312, 1985.

[124] I. Graham. Migrating to Object Technology. Addison-Wesley, Reading, MA, 1995.
[125] Green Mountain Computing Systems. Green Mountain VHDL Tutorial, 1995.
[126] International Telecommunications Union. Recommendation Z.100 — Specification and Descrip-

tion Language. Geneva, 1999.
[127] B. Jacobs. Objects and classes, coalgebraically. In B. Freitag, C.B. Jones, C. Lengauer,

and H.-J. Schek, Eds., Object-Orientation with Parallelism and Persistence. Kluwer Academic
Publishers, 1996, pp. 83–101.

[128] I. Jacobson. Object-Oriented Software Engineering, A Use Case Driven Approach. Addison-Wesley,
Reading, MA, 1992.

[129] N.D. Jones, C. Gomard, and P. Sestoft. Partial Evaluation and Automatic Program Generation.
Prentice Hall, New York, 1993.

[130] J.V. Kapitonova, T.P. Marianovich, and A.A. Mishchenko. Automated design and simulation of
computer systems components. Cybernetics and System Analysis, 6: 828–840, 1997.

[131] M. Kaufmann and J.S. Moore. ACL2: an industrial strength version of NQTHM. In Proceedings
of the 11th Annual Conference on Computer Assurance (COMPASS96), June 1996, pp. 23–34.

[132] S. Kripke. Semantical considerations on modal logic. Acta Philosophica Fennica, 16: 83–94, 1963.
[133] J. van Leeuwen, Ed., Handbook of Theoretical Computer Science. MIT Press, Cambridge,

MA, 1991.
[134] A.A. Letichevsky, and J.V. Kapitonova. Mathematical information environment. In Proceedings

of the 2nd International THEOREMA Workshop, Linz, June 1998, pp. 151–157.
[135] A.A. Letichevsky and D.R. Gilbert. Agents and environments. In Proceedings of the 1st International

Scientific and Practical Conference on Programming, Kiev, 1998.
[136] A.A. Letichevsky and D.R. Gilbert. A model for interaction of agents and environments. In

Selected Papers from the 14th International Workshop on Recent Trends in Algebraic Development
Techniques. Lecture Notes in Computer Science. vol. 1827, 2004, pp. 311–328.

[137] P. Lindsay. On transferring VDM verification techniques to Z. In Proceedings of Formal Methods
Europe — FME’94, Barcelona, October 1994.

[138] W. McCune. Otter 3.0 Reference Manual and Guide. Technical report, Argonne National
Laboratory Report ANL-94, 1994.

[139] K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, Dordrecht, 1993.
[140] M. Morockovets and A. Luzhnykh. Representing mathematical texts in a formalized natural

like language. In Proceedings of the 2nd International THEOREMA Workshop, Linz, June 1998,
pp. 157–160.

[141] T. Nipkow, L. Paulson, and Markus Wenzel. Isabelle/HOL — A Proof Assistant for Higher-Order
Logic. Lecture Notes in Computer Science, vol. 2283. Springer-Verlag, Heidelberg, 2002.

[142] S. Owre, J.M. Rushby, and N. Shankar. A prototype verification system. In D. Kapur, Ed., Pro-
ceedings of the 11th International Conference on Automated Deduction (CADE). Lecture Notes in
Artificial Intelligence, vol. 601, Springer-Verlag, Heidelberg, 1992, pp. 748–752.

[143] G. Plotkin. A Structured Approach to Operational Semantics. Technical report, DAIMI FN-19,
Aarhus University, 1981.

[144] K.S. Rubin and A. Goldberg. Object behavior analysis. Communications of the ACM, 35:
48–62, 1992.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 57 — #57

System Validation 6-57

[145] R. Rudell. Dynamic variable reordering for ordered binary decision diagrams. In Proceedings of
the IEEE/ACM ICCAD’93, 1993, pp. 42–47.

[146] J. Rushby. Mechanized formal methods: where next? In J. Wing and J. Woodcock, Eds., FM99: The
World Congress in Formal Methods. Lecture Notes in Computer Science, vol. 1708. Springer-Verlag,
Heiderberg, 1999, pp. 48–51.

[147] J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: predicate subtypes in PVS. IEEE
Transactions on Software Engineering, 24: 709–720, 1998.

[148] M. Saeki, H. Horai, and H. Enomoto. Software development process from natural language
specification. In International Conference on Software Engineering. Pittsburgh, March 1989,
pp. 64–73.

[149] J. Tsai and T. Weigert. Knowledge-Based Software Development for Real-Time Distributed Systems.
World Scientific Publishers, Singapore, 1993.

[150] M. Vardi. Verification of concurrent programs — the automata-theoretic framework. In Proceed-
ings of the 2nd IEEE Symposium on Logic in Computer Science, pp. 167–176.

[151] T. Weigert and J. Tsai. A logic-based requirements language for the specification and analysis of
real-time systems. In Proceedings of the 2nd Conference on Object-Oriented Real-Time Dependable
Systems, Laguna Beach, 1996, pp. 8–16.

ZURA: “2824_C006” — 2005/4/6 — 17:35 — page 58 — #58

