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Abstract

Algebraic program is considered as a system of rewriting rules jointly with rewriting strategy
that may be represented in procedural form. The optimization of an algebraic program therefore is
reduced to the development of optimal strategy and optimal implementation of it. This paper is de-
voted to the problem of finding optimal strategies for the given set of rewriting rules. New algorithm
which implement the strategy of call by need type is proposed for regular systems. This algorithm
generalizes previously developed approaches based on strongly necessary occurrences (Huet and
Levy) and strongly necessary sets (Sekar and Ramakrishnan). The possibility of extending call by
need strategies to a more complex environment of rewriting provided by APS is discussed.

1 Introduction

Rewriting technique is the main technique used in algebraic programming. It has been intensively
studied in the ast few years [9, 6]. There are many implementations of term rewriting systems. Some
of them support algebraic specifications (ASF [2], ASSPEGIQUE [3]), others are rewriting laboratories
based on Knuth-Bendix algorithm for computing canonical systems from a set of equational axioms
(REVEURS [7], for instance). The languages of OBJ family [4] and O’Donnell’s languages [13] are the
basis for equational programming. Rewriting technique was used in ANALITIC [16]. It is used in most
of modern computer algebra systems from Reduce to Mathematica™ and Axiom.

Rewriting technique is used as a basis for algebraic programming in APS [10, 11] which is under
development in Glushkov Institute of Cybernetics of the Ukrainian Academy of Sciences. This system
is in some sense the evolution of ANALITIC. It is a professionally oriented instrumental tool for the
design of applied systems based on algebraic and logical models of subject domains. APS integrates
four main paradigms of programming: procedural, functional, algebraic and logical. This integration
is achieved by an adjusted use of corresponding computational mechanisms.

Differently from the traditional approach oriented to the use of canonical systems of rewriting
rules with “transparent” strategy of their application, in APS it is possible to combine arbitrary
systems of rewriting rules with different strategies of rewriting. Such an approach essentially extends
the possibilities of rewriting technique enlarging the flexibility and expressibility of it. There are many
examples in which complex algorithms have short and expressive representation in the form of rewriting
system with properly chosen rewriting strategy.

The main computational mechanisms of APS include: rewriting strategies, canonical forms, data
types, recursive data structures processing, inheritance and interaction between modules. They were
formally described in [11]

The hierarchical structure of the system provides different tools for increasing the efficiency of
algebraic programs. It includes writing canonical forms for most frequently used operations at low
level (C language), writing internal procedures in C, sharing the complexity between rewriting rules
and strategies, developing efficient strategies and iinplementing them.



When a good strategy is found it may be optimized using formal transformations of procedural
programs. A corresponding approach based on mixed computations was described by in [12]. Nearby
results were obtained in [15]. This paper is devoted to the problem of developing optimal strategies for
a given set of rewriting rules.

One of the first studies of optimal strategies for reqular rewriting systems has been done by Huet
and Levi in [5]. In that paper the notion of needed redex occurrences was introduced and the strategy
that reduces only needed occurrences was developed for a class of regular rewriting systems called
strongly sequential. The notion of strong sequentiality as well as the strategy based on this notion
depends only on the set of left hand sides (lhss) of rewriting systems. Further development and study
of the notion of strong sequentiality was presented in [8].

Recently some new generalizations for call by need have been developed. In [1] the notion of tree
sequentiality was introduced that is more general than strong sequentiality. In the paper of Sekar and
Ramakrishnan [14] a nice generalization of Huet-Levy theory was proposed based on the notion of
strongly necessary sets of occurrences and the algorithm was developed that finds minimal (in some
sense) strongly necessary sets and uses them for optimal reduction. In the special case of strongly
sequential systems this algorithm finds one of the needed occurrences and realizes Huet-Levy strategy.

In this paper new call by need strategy will be described. This strategy is based on the notion of
necessary sets of redexes (occurrences) like Sekar-Ramakrishnan algorithm but removes some essential
restrictions for it. For example it does not demand the rewriting system to be constructor and remains
optimal even if the source term contains occurrences that are not legal. It is shown also how to
implement the optimal strategy in APS.

In the next section the tools for building strategies used in APS are described. Then the criteria
of optimality will be discussed. The call by need strategy and its implementation in APS at the high
level is considered in section 4.

2 Tools for building strategies

Example of algebraic program. Let us begin with a typical example of algebraic program written
in the APLAN language for APS. This program is called log.ap and contains some tools to process
propositional formulas.

INCLUDE <ac.ap>
MARK subs(2);
NAMES R,R1,Q1,cnf;
/% Rules for eliminating <=>, ->, and de Morgan rules */
R :=rs(x,y)(
x<=> y=(x->y) & (y -> x),
x > y="&® ||y,

“(T(x) ) =x,
oy =& &G,
“(x & oy = C@ I TN,
“Tx<=>y)= x>y |l @ ->x)),
(x >y =(x& (M)
);
/* Rules for CNF */

Rl :=rs(x,y,z,u,v)(
x&yll z&uw

&

v=(GIllw &Il z)& Il ws&xll 2z &v,

&y llz)&u=Cyll z)& & I|lz) &u,
xlly&z)&u=(C(xll2)& &Iy &u,
x&yll z gu=(Il2&GIl2)&&Illweiyll w,
x&yll =z =(x 1l 2)& @Il 2,

&

x|l y& z (xIly)& 1| 2



Q1 :=rs(x,y,z)(

x &¢Pllz =G&Il2)&GIl =2,
x Iy &2)=Ily & &Il 2,
Iz = xIly Il z

);

cnf :=proc(x) (
ntb(x,R),
can_ord(x,R1,Q1),
return(x)

);

NAMES deM,Id,ntb2,is_id;
deM :=rs(x,y)(

“("(x) ) =x,
“(x Il y) = deM(T(x)) & deM( "(y)),
“(x & y) = deM("(x)) || deM(~(y))
);
/* Rules for proving identities in logic */
Id:=rs(x,y,2z)(
1 -> 0 =0,
0 -> x =1,
X -> X 1,
X -> 1 =1,
X >y llz =x&deM( “(y) ) -> z,
X >y& z =(x->y) & x->2z),
xlly =-> z =(x ->2z) & y ->2),
x& y - “(z) = subs(z=1,x) -> deM( ~(subs(z=1,y))),
x& y -> z = subs(z=0,x) -> deM( ~(subs(z=0,y))),
X -> y =0
);
ntb2:=proc(t,R) (
appls(t,R);
(ART(t)>0)->ntb2 (arg(t,1),R);
t:=can(t);
ntb2 (t,R)
);
is_id:=proc(x) (
ntb(x,R);
x-->(1->x);
ntb2(x,Id);
return(x)
);

The first line of 1og.ap means that it includes previously defined algebraic program ac.ap which
contains some standard definitions and the description of associative-commutative operations. In par-
ticular it contains the description of logical connectives ~(negation), &, || (disjunction), ->, <=>, and
information that defines & and || as boolean operations. The next line introduces new operation
symbol subs with arity 2. To evaluate algebraic programs different interpreters may be used. The
interpreter nsint which is to be used for evaluating log.ap interprets subs as the substitution func-
tion: subs((z1 = y1,...,Zn = Yn),2) substitutes yi,...,y, for all occurrences z1,...,z, in z where
z1,...,Ty, are supposed to be different atoms. At the time of substituting the expression is simplified
by reducing it to the main canonical form which will be discussed below.



The values of the names R, R1, Q1, deM and Id defined by initial assighments are systems of rewriting
rules. To apply them to algebraic expressions (terms) one may use standard strategies implemented by
the current interpreter or write his own ones. The function cnf computes (some) conjunctive normal
form of logical expression. It is defined by means of procedure that uses two standard strategies ntb
and can_ord. The first is a one time top-bottom strategy. It passes over the nodes of a tree represented
expression in a top-bottom manner and checks the applicability of rewriting rules in the order they are
written in the system. This strategy is used for eliminating -> and <=> and transferring negations by
de Morgan rules.

Strategy can_ord works with two systems of rewriting rules. The first system is applied top-
bottom, the second — bottom-up. When the strategy passes over the nodes bottom-up the subterms are
ordered w.r.t. ac- and boolean operations by merging already ordered arguments of such operations.
The laws of contradiction and exclusion third are also used when merging is applied for boolean
operations. It is important to note that after each successive application of a rule the substituted
instance of the right hand side (rhs) is reduced to its main canonical form. This reduction varies from
one interpreter to another and usually includes constant computations for arithmetical and logical
operations, computations for interpreted operations (such as subs) and some other simplifications.

The system Id is used for checking the logical formulas to be identically true. If so the formula
is transformed to 1, otherwise to 0. The system Id is not confluent but the result will be defined
uniquely if the strategy meets two conditions: it checks the rules in the order they are written and the
rewriting terminates only when no rules are applicable. The standard strategy applytb which repeats
ntb while possible would be sufficient but it is too slow because while reducing a formula X&Y it will
reduce Y even if X is already reduced to 0. The user defined strategy ntb2 is much faster. It uses the
function can which calls main canonical form reduction that in particular applies identity 0&X = 0.
The statement appls(t,R) applies the system R to the top operation of t while possible.

Basic strategies. The strategies of rewriting in APS are based on two main internal (that is
realized at low level) procedures applr and appls. The statement applr (¢, R) attempts to apply one
of the rules of the system R to the term ¢. If there are no applicable rules, the name yes gets the
value 0. Otherwise, the first applicable rule is applied and yes gets the value 1. The application of
unconditional rule is usual: matching left hand side (lhs) with ¢, if success then substitution of the
values of variables in the rhs and replacement of ¢. Before replacing the redex, the instance of the rhs
is reduced to the main canonical form.

Conditional rules are applied to terms in the following manner. First matching is to be done. Then
if success the condition is reduced to main canonical form. If the result is 1, applying the rule continues
as usual. Otherwise application is cancelled.

Besides the condition ”yes” different versions of the procedure applr may produce some additional
information that may be used by strategies for selection of further movement of rewriting process. For
example, it may be the number of rule being applied, the right hand side of this rule and so on. The
statement appls(t¢,R) calls applr(¢,R) while yes = 1.

There are some peculiarities of rewriting in APS that must be pointed out. The first is strict
order of testing rules for applicability. It means that next rule is applied only if all previous rules
are not applicable. If no one of the lhss of the system is an instance of another, this order is not
essential because there may be only one applicable rule for any given term (or given occurrence).
Any system may be transformed to such order independent system in the following way. Get some
lhs and substitute for the variables all possible most general terms such that the new lhs and the
others are not the instances of one another and make the corresponding replacements. For a finite
signature there may be only a finite number of changes. For example, the lhs of the last rule in Id
is more general than all others and to make the system be order independent it must be replaced
by 1->"(x)=0, “(x)->0=0, ~(x)->1=0, ~(x)->a_1=0,..., " (x)->a_n=0, where a;,...,a, are all
propositional variables that may occur in the expression. Therefore a rewriting system may be consid-
ered as a short form of an order independent system.

Another peculiarity of rewriting in APS is the use of canonical form reductions which are applied
to the rhs after each successful rewriting. The main canonical form is defined by means of interpreters



of operations and is computed at the time of substituting the rhs by means of the formula

CAN(w(t1, - -, n)) = Qu(CAN(t1), . .., CAN(t,));

CAN(J?i) = U;;
CAN(z) = z;
where z1,...,x, are the variables of rewriting system, uq,...,u, are their values, computed during

the matching, z is primary object (number, name, atom or string). The function ¢, is the interpreter
of the operation w and is realized as a low level function. For uninterpreted operations it acts as the
identity function. There are two important exceptions to these rules: quote operation and application.
The following rules are used for them:

CAN(‘(t)) = t[my ¢ U1, .-, Ty  Up;
isfun(f) = CAN(f(z)) = ¢ (x)-.

isfun(f) is true if f is the name of a function, that is the value of this name is a rewriting system
or a procedure that returns a value. ¢s(x) is the value of the corresponding function on z. Apart from
that if f is the name of a rewriting system, the value is computed by applying this system to x by
means of applr. The semantics of application allows to introduce canonical reductions at high level
as interpreted functions. The function deM from the program log.ap may serve as an example. The
quote operation helps to switch off canonical reduction if it is necessary.

Some system interpreters of APS implement more complicated mechanisms for computing canon-
ical forms that support efficient computations in multisorted algebras with polymorphic operations
(see [11]).

APS permits also the use of ac-operations (associative and commutative ones). There are two
kinds of ac-operations: arithmetic and boolean type. An arithmetic ac-operation is considered as an
operation of a free module over integers, a boolean type operation is idempotent and satysfies identities
connected with negation. Canonical forms for ac-operations include ordering, reduction of similars for
arithmetical operations, applying the idempotency law, the laws of contradiction and exclusion third
for boolean type ones. It also includes the main canonical form reduction. It would be inefficient to use
ac-canonization at the level of CAN computation. Therefore in APS ac-canonization is used explicitly at
the level of strategies. The strategy can_ord may be mentioned as an example. It may be represented
by means of the following APLAN procedure.

can_ord:=proc(t,R1,R2)1loc(s,i)(
t:=can(t);
appls(t,R1);
forall(s=arg(t,i),
can_ord(s,R1,R2)

)3
can_up(t,R2)
);
can_up:=proc(t,R)loc(s,1i)(
appls(t,R);
while(yes,

forall(s=arg(t,i),
can_up(s,R)

)

appls(t,R)
);
t:=can(t);
merge (t)



All identities of ac-operations are used in the internal procedure merge that reduces a term to its
canonical form if this term is represented as ac-operation applied to already canonized arguments.

The main canonical form and ac-operations provide the consideration of algebraic expressions up
to some congruence consistent with the identities of the algebra that defines the subject domain. Two
expressions are equivalent if they are reduced to the same canonical form (the conditions for operation
interpreters to define the canonical form are formulated in [11]).

A strategy is called to be normalizing if the result of its application (if defined) is normalized (i.e.
contains no redexes) and presented in the main canonical form. A strategy is complete if it terminates
for any term that may be normalized by means of some strategy at all. It may be shown that all
strategies used in the example considered above are normalizing and complete w.r.t. the rewriting
systems they are applied to. But the uniqueness of the result may be garanteed only for proving
identities and eliminating connectives.

Yet another peculiarity of APS is the possibility of identifying the nodes of the graph that represents
the term. In particular if the rewriting system is not right linear (some variables may repeat in the
rhss) the values substituted for the different occurrences of the same variable are identified. To avoid
identification the functions copy or new may be used.

3 Criteria for optimization

The main efficiency criterion for an algebraic program is the time it spends for normalizing terms. This
criterion depends on many factors connected with implementation, therefore inorder to characterize
the algorithm realized by the program other criteria must be used. They are the number of attempts to
apply the rewriting system, the number of successful attempts (reductions), their ratio. More detailed
criteria include the number of nodes observed during the execution of the program, the number of
comparisons and other actions that demand the time to be spent for.

Call by need strategies introduced by Huet and Levi are directed to decrease the number of re-
ductions by choosing only needed redex occurrences. The redex occurrence is called needed if this
occurrence or one of its residuals (copies of a subterm that appear as a result of rewriting) must be
rewritten in arbitrary possible rewriting processes. Call by need strategies are developed for regular
systems (left linear and nonoverlapping). For such systems any redex occurrence which is not rewritten
at a current step of rewriting transforms to an unchanged copy and therefore left to be redex occurrence
if it does not disappear at all. Needed redexes may not disappear and the strategy which rewrites only
needed redexes avoids wasteful rewriting redexes that will disappear, therefore it decreases the total
number of reductions.

The notion of needed redexes is unsolvable and Huet and Levy restricted their consideration to
strongly needed redexes (their needness may be found out considering only the lhss of the system)
and the subclass of strongly sequential systems for which a call by need strategy may be effectively
constructed. The generalization proposed by Sekar and Ramakrishnan extends the notion of needness
to the sets of redexes. The set of redex occurrences is called necessary if at least one of them or their
residuals must be reduced in any reduction process. And again for strongly necessary sets and regular
constructor systems the algorithm is developed that finds some necessary set which is proved to be
minimal for legal terms.

The search for necessary occurrences needs a large amount of work which may appear to be vain if
every variable of lhs occurs in corresponding rhs (redexes never disappear). But information obtained
during search of redexes may be used to improve the rewriting process w.r.t. other criteria: to decrease
the number of matchings, number of nodes being observed and so on. This is true for the new strategy
considered in the next section. Besides it is free of the restrictions of Sekar-Ramakrishnan method.

4 Call by need strategies

Regular rewriting systems are of great importance in the theory and applications of rewriting technique.



They are defined as leftlinear (each variable in the lhs of each rule occurs only once) and nonoverlapping
(no left hand side is unified with a subterm of another, or there is no critical pairs). Regular systems
are confluent but not necessarily noetherian.

The procedure nset presented below is based on the notion of strongly necessary sets and the
modification of applr.

The modified procedure applr (t,R) does the same as the original one but in addition to producing
the value of the name yes it produces as the value of the name failset the set of occurrences which in
the case when yes=0 satisfy the completeness condition w.r.t. t and the set L of lhss of the system R.
To formulate this condition let us introduce the notion of compatibility of the term ¢ with the lhs [ from
the set L of lhss. This notion is recursive: t is compatible with [ if it is an instance of [ or there exist
nonempty disjoint occurrences p1, ..., p, such that subterms arg(t, p1), ..., arg(t, p,) corresponding to
these occurtences are compatible with some lhss from L and t[p; < t1,...,pn < t,] is the instance of [
for some t1,...,t, (denotation arg(t,p) is used instead of usual ¢/p because it is accepted for APLAN).

Suppose that ¢ is not an instance of any lhs from R. The set {p1,...,px} is complete w.r.t. t and L
if there exists a subset {l1,...,l} of the set L such that arg(t, p;) is not an instance of arg(l;, p;), i =
1,...,k, tis compatible with no lhs from L\ {l,...,l;} and for each () < ¢ < p; arg(t,q) is not
compatible with any lhs from L, i =1,...,k. Note that if &k = 0 (the set of occurrences is empty) then
completeness means that ¢ is compatible with no lhs from L.

By definition [14] the set @ of redexes is strongly necessary w.r.t. L if in an arbitrary reduction
sequence by means of an arbitrary rewriting system with the set L of lhss at least one of the redexes
in @ or its residual is reduced on some step of rewriting.

Theorem 1 Let {p1,...,pr} be complete w.r.t. t and L, the sets Q1,...,Qy are strongly necessary for
arg(t,p1),-..,arg(t,px) correspondingly. Then if Q1 U ...U Qy is not empty, this union is a strongly
necessary set for t, otherwise a nonempty strongly necessary set for any of arg(t, 1) is strongly necessary
for t.

The term ¢ can not be reduced at the root before reducing one of the subterms arg(t,p;),...
...,arg(t,px). But these terms can not be reduced before at least one from the union Q1 U...U Q.
And if this union is empty ¢ can not be reduced at all and any strongly necessary set for its arguments
is strongly necessary for t.

To be effective the modified applr must use some simple sufficient condition for noncompatibility
which might be checked simultaneously with matching. Such simple conditions exist for so called con-
structor systems that distinguish between defined and constructor operations: a term with constructor
operation at the root may never be compatible with any lhs. Exactly this kind of systems is considered
in [14] and our algorithm generalizes their approach to nonconstructor systems.

The strategy nset based on strongly necessary sets and theorem 1 may now be represented as
follows.

nset:=proc(t,R)loc(cont,s,i) (
dowhile(
cont:=applns(t,R),
cont) ;
forall(s=arg(t,i),
nset(s,R)
)
);
applns:=proc(t,R)loc(cont,fs,p) (
applr(t,R);
yes—>return(1);
cont:=0;
fs:=failset;
nonempty (fs)->



forall(p in fs,
cont:=cont| |applns(arg(t,p) ,R)
);
return(cont)

)
The loop forall(s=arg(x,i),y) means the same as
for(i:=1,i<=ART(x),i:=i+1, s—-—->arg(x,i),y)

The loop forall(x in y, z) executes z for all elements of the list y.

Every reduction that is made by the algorithm in one step, that is in the outermost call of applns
rewrites only redexes that belong to some strongly necessary set. It may be shown that this set is
included into the set, generated by Sekar-Ramakrishnan algorithm, and therefore for strongly sequential
systems it consists with the unique strongly necessary occurrence.

Improvements of nset. There are some possibilities to improve the above algorithm. First
the necessary set which is computed after defining the failset may be reduced dynamically during
computation. Indeed, if in the loop for all p in failset applns has rewritten the top occurrence of
arg(t,p) the term t may become redex and then it is not necessary to continue the search for other
elements of low level necessary set. The second improvement is the decrease of the number of nodes
being observed in the process of rewriting. This may be achieved by combining the search for necessary
sets with the process of rewriting. The improved algorithm may be represented in the following way.

nset:=proc(t,R,L)loc(cont,s,i) (
dowhile(
cont:=applns(t,R,L),
cont>0) ;
forall(s=arg(t,i),
nset(s,R,L)
)
);

applns:=proc(t,R,L)1loc(cont,contl,1,q) (
cont:=0;
forall(l in L,
is_type(t,1)->(
q-->compat (t,1);
equ(q,match)->(
applr(t,R);
return(2)
Jelse g-->arg(q,1);
contl:=applns(q,R,L);
(cont1==2)->(
applr(t,R);
yes->return(2)
else contl:=1

);
cont :=cont| |cont1l
)
);
return(cont)

)



compat :=proc(t,1)loc(p,q,i)(
is_par(1l)->return(match);
p:=match;
is_type(t,1)->(
for(i:=1,i<=ART(%t),i:=1i+1,
g-->compat (arg(t,i) ,arg(1,1i));
equ(p,match)->p-->q

);

return(p)
);
return(pt(t))

)

The procedure compat returns atom match if t is matched with 1 or the pointer (operation pt)
to the first subterm of t which is not matched with the corresponding subterm of 1. The procedure
applns returns now 0,1 or 2. It returns 0 if the term t can never be reduced at the root. The value
1 means that some necessary set of occurrences in t was reduced but t can not be reduced at this
moment. The value 2 means the same but it is possible for t to be rewritten.

The proof of correctness of the program applns is realized using induction on the depth of the term

and the following invariant for the main loop. If £ is the initial value of t and [4,...,l, are the lhss
already observed in the loop forall(1l in L,...) then there exists the set of occurrences of ¢ which
is complete w.r.t. ¢ and l1,...,[, and the union of some necessary sets for these occurrences has been

already reduced.

The procedures nset and applns allow some other improvements which eliminate repeated actions
such as repeated observing of subterms which are compatible with no lhss, but the main optimization
may be obtained by means of mixed computations by substituting diferent rewriting systems into the
strategy [12].

The strategy nset may also be applied to nonregular systems and after some modifications to the
systems with APS semantics (ordering, canonical forms and identification of nodes). But it may lose
the normalizing property and completeness. The repetition of the strategy while possible makes it
normalizing but completeness requires special investigations. In practice these problems are not very
difficult and the strategy may be effectively used for the extended classes of the systems.

5 Concluding remarks

The strategy based on the necessary sets of occurrences which was described in the paper was realized
in APS and tested on some examples from computer algebra and logic. The experiments have shown
that this strategy may be more efficient than others in spite of the time spent for analysis of terms.
Therefore this strategy has not only theoretical but also practical interest and is worth studying in
more details.
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